【MATLAB第96期】基于MATLAB的SVM(线性)、SVM(高斯)、决策树、KNN等机器学习算法回归及分类Boost集成学习模型(含不同模型权重)

【MATLAB第96期】基于MATLAB的SVM(线性)、SVM(高斯)、决策树、KNN等机器学习算法回归及分类Boost集成学习模型(含不同模型权重)

引言

文章使用Boost集成学习方法,对多个机器学习模型进行融合,并通过算法得到对应权重。

因暂时精力有限,仅展示了测试集预测结果,以及有限的机器学习算法模型,包括不同核函数的支持向量机svm(linear、gaussian)、不同NumNeighbors值的K邻近KNN算法以及决策树算法。

后期将不定期更新训练集预测效果、多种机器学习算法以及多种集成算法的结果。

一、分类预测

1、数据设置:

12特征变量,1因变量,4分类

clike 复制代码
%%  1.清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%%  2.导入数据
res = xlsread('数据集C.xlsx');

%%  3.划分训练集和测试集
temp = randperm(357);

P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);

P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);

%%  4.数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test ;

2、训练学习器

Learner = {'SVM(线性)', 'SVM(高斯)', 'KNN(1)', 'KNN(2)', 'KNN(3)', '决策树'}

3、集成结果

二、回归预测

1、数据设置:

7特征变量,1因变量

clike 复制代码
%%  1.清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  2.导入数据
res = xlsread('数据集.xlsx');

%%  3.划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  4.数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

2、训练学习器

Learner = {'SVM(线性)', 'SVM(高斯)', '决策树'};

3、集成结果

三、代码获取

1.阅读首页置顶文章

2.关注CSDN

3.根据自动回复消息,回复"96期"以及相应指令,即可获取对应下载方式。

相关推荐
张德锋1 小时前
Pytorch实现mnist手写数字识别
机器学习
草履虫建模1 小时前
Postman - API 调试与开发工具 - 标准使用流程
java·测试工具·spring·json·测试用例·postman·集成学习
roman_日积跬步-终至千里2 小时前
【学习线路】机器学习线路概述与内容关键点说明
人工智能·学习·机器学习
Zevalin爱灰灰3 小时前
MATLAB GUI界面设计 第六章——常用库中的其它组件
开发语言·ui·matlab
禺垣6 小时前
支持向量机(SVM)分类
机器学习
禺垣6 小时前
协同过滤推荐算法
机器学习
这里有鱼汤6 小时前
90%的人都会搞错的XGBoost预测逻辑,未来到底怎么预测才对?
后端·机器学习
小庞在加油6 小时前
《dlib库中的聚类》算法详解:从原理到实践
c++·算法·机器学习·数据挖掘·聚类
蓝婷儿8 小时前
Python 机器学习核心入门与实战进阶 Day 1 - 分类 vs 回归
python·机器学习·分类
程序员阿超的博客10 小时前
Python 数据分析与机器学习入门 (八):用 Scikit-Learn 跑通第一个机器学习模型
python·机器学习·数据分析·scikit-learn·入门教程·python教程