如何设定一个N层CNN的Layer,CNN初始化

如何设定一个N层CNN的Layer,CNN初始化

前言

目前人工智能已经融入到我们的生活,大数据模型也是层出不穷。那我们就学习一些简单的模型设置。

干货

代码

python 复制代码
# This is the original CNN layer setup,
def build_cnn(input_layer):
    cnn = Conv1D(9,9,padding="same")(input_layer)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.05)(cnn)

    cnn = Conv1D(18,7,padding="same")(cnn)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.07)(cnn)

    cnn = Conv1D(36,5,padding="same")(cnn)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.1)(cnn)

    cnn = Conv1D(72,3,padding="same")(cnn)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.1)(cnn)

    return cnn
    

解释

  1. 这里面input_layer需要自己去设计,如何切数据请根据自己的情况来设置;
  2. Conv1D(x,y)函数建议x参数成倍数增长,y参数递减;
  3. 建议把每层的数据进行标准化BatchNormalization()
  4. 优于我们创建了这么多layer数据,建议随机剔除一些来避免过拟合:
    • 当x参数越来越大,建议把Dropout(rate = 【rate】) 逐渐调大,根据自己的模型来调整,个人不建议调太大;
  5. 还想加啥函数请自行调整,DL这玩意儿每个人有每个人的理解和需求;
  6. 需要导入什么库请自己搜吧,我也懒得列出来了。XD

结语

希望大家有所收获,有不明白的欢迎大家留言。

相关推荐
EkihzniY2 小时前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通2 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
铅笔侠_小龙虾3 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
kaikaile19953 小时前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1233 小时前
第1章_LangGraph的背景与设计哲学
人工智能
Aevget4 小时前
界面组件Kendo UI for React 2025 Q3亮点 - AI功能全面提升
人工智能·react.js·ui·界面控件·kendo ui·ui开发
桜吹雪4 小时前
LangChain.js/DeepAgents可观测性
javascript·人工智能
&&Citrus4 小时前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu
乌恩大侠4 小时前
Spark 机器上修改缓冲区大小
人工智能·usrp
STLearner4 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘