如何设定一个N层CNN的Layer,CNN初始化

如何设定一个N层CNN的Layer,CNN初始化

前言

目前人工智能已经融入到我们的生活,大数据模型也是层出不穷。那我们就学习一些简单的模型设置。

干货

代码

python 复制代码
# This is the original CNN layer setup,
def build_cnn(input_layer):
    cnn = Conv1D(9,9,padding="same")(input_layer)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.05)(cnn)

    cnn = Conv1D(18,7,padding="same")(cnn)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.07)(cnn)

    cnn = Conv1D(36,5,padding="same")(cnn)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.1)(cnn)

    cnn = Conv1D(72,3,padding="same")(cnn)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.1)(cnn)

    return cnn
    

解释

  1. 这里面input_layer需要自己去设计,如何切数据请根据自己的情况来设置;
  2. Conv1D(x,y)函数建议x参数成倍数增长,y参数递减;
  3. 建议把每层的数据进行标准化BatchNormalization()
  4. 优于我们创建了这么多layer数据,建议随机剔除一些来避免过拟合:
    • 当x参数越来越大,建议把Dropout(rate = 【rate】) 逐渐调大,根据自己的模型来调整,个人不建议调太大;
  5. 还想加啥函数请自行调整,DL这玩意儿每个人有每个人的理解和需求;
  6. 需要导入什么库请自己搜吧,我也懒得列出来了。XD

结语

希望大家有所收获,有不明白的欢迎大家留言。

相关推荐
曾经的三心草几秒前
深度学习1-简介-简单实现-手写数字识别
人工智能·深度学习
拓端研究室12 分钟前
专题:2025年医疗健康行业状况报告:投融资、脑机接口、AI担忧|附130+份报告PDF合集、图表下载
大数据·人工智能
盘古信息IMS35 分钟前
告别 “老系统困境”!三真科技 × 盘古信息:汽车电子数字化工厂升级
人工智能·科技·汽车
Alter123040 分钟前
用AI重构人机关系,OPPO智慧服务带来了更“懂你”的体验
人工智能·重构
爱看科技41 分钟前
科技新突破!微美全息(NASDAQ:WIMI)研发保留运动想象脑机接口“方差密钥”技术
大数据·人工智能·科技
中科岩创1 小时前
青海某公路水渠自动化监测服务项目
大数据·人工智能·物联网
报错小能手1 小时前
python(入门)map内置函数及import模块导入,as别名
开发语言·人工智能·python
Jump 不二1 小时前
百度 PaddleOCR 3.0 深度测评:与 MinerU 的复杂表格识别对决
人工智能·深度学习·百度·ocr
用户5191495848451 小时前
Flutter应用设置插件 - 轻松打开iOS和Android系统设置
人工智能·aigc