如何设定一个N层CNN的Layer,CNN初始化

如何设定一个N层CNN的Layer,CNN初始化

前言

目前人工智能已经融入到我们的生活,大数据模型也是层出不穷。那我们就学习一些简单的模型设置。

干货

代码

python 复制代码
# This is the original CNN layer setup,
def build_cnn(input_layer):
    cnn = Conv1D(9,9,padding="same")(input_layer)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.05)(cnn)

    cnn = Conv1D(18,7,padding="same")(cnn)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.07)(cnn)

    cnn = Conv1D(36,5,padding="same")(cnn)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.1)(cnn)

    cnn = Conv1D(72,3,padding="same")(cnn)
    cnn = BatchNormalization()(cnn)
    cnn = Dropout(rate = 0.1)(cnn)

    return cnn
    

解释

  1. 这里面input_layer需要自己去设计,如何切数据请根据自己的情况来设置;
  2. Conv1D(x,y)函数建议x参数成倍数增长,y参数递减;
  3. 建议把每层的数据进行标准化BatchNormalization()
  4. 优于我们创建了这么多layer数据,建议随机剔除一些来避免过拟合:
    • 当x参数越来越大,建议把Dropout(rate = 【rate】) 逐渐调大,根据自己的模型来调整,个人不建议调太大;
  5. 还想加啥函数请自行调整,DL这玩意儿每个人有每个人的理解和需求;
  6. 需要导入什么库请自己搜吧,我也懒得列出来了。XD

结语

希望大家有所收获,有不明白的欢迎大家留言。

相关推荐
小毅&Nora2 分钟前
【人工智能】【强化学习】 ① 本年度大模型强化学习算法全景:6种主流算法深度解析
人工智能·强化学习
LiFileHub4 分钟前
计算机视觉全栈宝典:从BEV感知到边缘部署(附15套实战方案)
人工智能·计算机视觉
石去皿4 分钟前
本地安装与使用 Ollama:运行大语言模型的完整指南
人工智能·语言模型·自然语言处理
却道天凉_好个秋7 分钟前
OpenCV(四十九):GrabCut
人工智能·opencv·计算机视觉·图像分割·grabcut
SmartBrain7 分钟前
MCP(Model Context Protocol)实战
人工智能·语言模型
dulu~dulu10 分钟前
机器学习---过拟合与正则化
人工智能·深度学习·机器学习·dropout·正则化·过拟合
清名10 分钟前
AI应用-基于LangChain4j实现AI对话
人工智能·后端
好奇龙猫27 分钟前
【人工智能学习-AI-MIT公开课-第6.博弈,极小化极大化,α-β】
人工智能·学习
GodGump31 分钟前
Stephen Wolfram 谈 AI 爆发的底层逻辑:计算不可约性与神经符号主义的未来
人工智能
nju_spy31 分钟前
NJU-SME 人工智能(四)深度学习(架构+初始化+过拟合+CNN)
人工智能·深度学习·神经网络·反向传播·xavier初始化·cnn卷积神经网络·pytorch实践