从传统CNN到残差网络:用PyTorch实现更强大的图像分类模型在深度学习领域,卷积神经网络(CNN)凭借其强大的空间特征提取能力,已成为计算机视觉任务的核心工具。然而,随着网络深度的增加,传统的CNN往往会面临梯度消失/爆炸和训练退化的问题——即使增加网络层数,模型的准确率也不升反降。2015年,何恺明团队提出的**残差网络(Residual Network, ResNet)**通过引入“跳跃连接”(Skip Connection),解决了这一难题,使深度神经网络的训练变得可行。本文带你理解残差网络的核心思想,并基于PyTorch实现一个基础残差网络模型。