modelbox线程爆满宕机bug

该bug的解决需要特别感谢张同学。有了大佬的帮助,这个bug才得以解决。

问题现象

modelbox可以进行模型推理,但压测一段时间后,modelbox会宕机,并发生段错误。

"libgomp: Thread creation failed: Resource temporarily unavailable"

执行ps -eLf | wc -l发现线程数爆满,达到了3万个,说明在请求期间线程不断被创建,但没有被回收。下图是用并发数为1的请求连续压测modelbox,令modelbox持续执行推理10秒后打印的线程数,已经达到了14230个线程。

说明连续的请求会令modelbox创造很多新线程,但它们被服务后并没有被回收。

探究

笔者用的是modelbox官方在公司内网提供的基础镜像。为了试出错误原因,做过如下尝试:

尝试更换了基础镜像。在develop和runtime镜像之间切换,并不能解决问题。而且笔者使用的镜像版本发布于23年11月,不至于太旧。

更换过pytorch版本,官方推荐的pytorch版本有1.8,1.11和2.1,笔者用的是pytorch 1.11,与基础镜像中的python3.7相匹配,但pytorch2.1需要python3.8,与基础镜像包含的版本不匹配。因此最终没有更换pytorch版本。

更换torch_npu版本。从torch_npu的release界面可知,该插件1.11.0的小版本有从post1到post6,比如下图的torch_npu-1.11.0.post6-cp37-cp37m-linux_aarch64.whl

官方本来推荐使用与1.11.0搭配的是post1,笔者尝试换成了post6。发现并不能解决问题,而且还会引发版本不兼容的bug。

2023-12-12 11:30:45,809\]\[ERROR\]\[ flow.cc:537 \] build graph failed, Invalid argument, build graph failed, please check graph config. -\> open flowunit 'infer', type 'cpu' failed. -\> import infer@InferFlowUnit failed: ImportError: /usr/local/lib64/python3.7/site-packages/torch_npu/lib/libtorch_npu.so: undefined symbol: _ZNK5torch8autograd4Node4nameEv

更换了所有依赖版本都无效,顺便发现该问题与tensor.npu()的调用相关:

  • 如果调用tensor.npu()相关的代码,线程就会爆满。
  • 如果去掉模型推理和.npu()相关代码,该问题就会消失。

或许tensor.npu()的执行时间长,会触发modelbox某种机制,令线程数自动扩容?

解决办法

从modelbox git仓库的issue,add: max_executor_thread_num 可见,官方在23年9月为modelbox的配置文件加了个参数max_executor_thread_num,添加后,执行线程池的容量会有所限制,避免无限增长。

设置方式如下,需要修改graph的.toml文件,加一个参数max_executor_thread_num=1,就可以限制线程无限增长了。这个数值之后可以再调整为10或100,优化性能。

复制代码
[graph]
max_executor_thread_num=1
graphconf = """
digraph model_inference {

修改后重启容器,能在框架启动时的日志中看到该参数被打印。

压测一段时间后,线程数被控制住了,该问题终于被解决。

相关推荐
亿信华辰软件2 分钟前
构建智慧数据中台,赋能饮料集团全链路数字化转型新引擎
大数据·人工智能·云计算
大模型实验室Lab4AI13 分钟前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪
旷野说21 分钟前
打造 36Gbps 超高速本地机器学习开发环境
人工智能·机器学习
陈天伟教授40 分钟前
人工智能应用-机器视觉:绘画大师 04.基于风格迁移的绘画大师
人工智能·神经网络·数码相机·生成对抗网络·dnn
爱打代码的小林43 分钟前
opencv基础(轮廓检测、绘制与特征)
人工智能·opencv·计算机视觉
AI浩1 小时前
面向无监督多场景行人重识别的图像-文本知识建模
人工智能·目标检测
Takoony1 小时前
深度学习多卡训练必须使用偶数张GPU吗?原理深度解析
人工智能·深度学习
翱翔的苍鹰1 小时前
通俗、生动的方式 来讲解“卷积神经网络(CNN)
人工智能·神经网络·cnn
Irene.ll1 小时前
DAY31 文件的拆分方法和规范
人工智能·机器学习
真上帝的左手1 小时前
26. AI-大语言模型应用发展
人工智能