684. Redundant Connection 685. Redundant Connection II

684. Redundant Connection

In this problem, a tree is an undirected graph that is connected and has no cycles.

You are given a graph that started as a tree with n nodes labeled from 1 to n, with one additional edge added. The added edge has two different vertices chosen from 1 to n, and was not an edge that already existed. The graph is represented as an array edges of length n where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the graph.

Return an edge that can be removed so that the resulting剩余 graph is a tree of nnodes. If there are multiple answers, return the answer that occurs last in the input.

union - find: module:

python 复制代码
    def __init__(self):
        """
        初始化
        """
        self.n = 1005
        self.father = [i for i in range(self.n)]


    def find(self, u):
        """
        并查集里寻根的过程
        """
        if u == self.father[u]:
            return u
        self.father[u] = self.find(self.father[u])
        return self.father[u]

    def join(self, u, v):
        """
        将v->u 这条边加入并查集
        """
        u = self.find(u)
        v = self.find(v)
        if u == v : return
        self.father[v] = u
        pass


    def same(self, u, v ):
        """
        判断 u 和 v是否找到同一个根,本题用不上
        """
        u = self.find(u)
        v = self.find(v)
        return u == v

answer:

python 复制代码
class Solution:
    def findRedundantConnection(self, edges: List[List[int]]) -> List[int]:
        self.father = [i for i in range(len(edges) + 1)]
        for i in range(len(edges)):
            if self.is_same(edges[i][0], edges[i][1]): #主要逻辑,一个线段两头的father都相同这条线段就冗余redundant
                return edges[i]
            else:
                self.join(edges[i][0], edges[i][1]) #线段
        return []

    
    def find(self, u):
        if u != self.father[u]:
            self.father[u] = self.find(self.father[u])
        return self.father[u]
    
    def join(self, u, v):
        u = self.find(u)
        v = self.find(v)
        if u == v:
            return
        self.father[v] = u
        pass #可省

    def is_same(self, u, v):
        u = self.find(u)
        v = self.find(v)
        return u == v

optimal:

python 复制代码
class Solution:
    def findRedundantConnection(self, edges: List[List[int]]) -> List[int]:
        self.father = [i for i in range(len(edges) + 1)]
        for i in range(len(edges)):
            if self.find(edges[i][0]) == self.find(edges[i][1]):
                return edges[i]
            else:
                self.father[self.find(edges[i][1])] = self.find(edges[i][0])
        return[]

    def find(self, u):
        if u != self.father[u]:
            self.father[u] = self.find(self.father[u])
        return self.father[u]

685. Redundant Connection II

In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) for which all other nodes are descendants后人 of this node, plus every node has exactly one parent, except for the root node which has no parents.

The given input is a directed graph that started as a rooted tree with n nodes (with distinct values from 1 to n), with one additional directed edge added. The added edge has two different vertices chosen from 1 to n, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [ui, vi] that represents a directed edge connecting nodes ui and vi, where ui is a parent of child vi.

Return an edge that can be removed so that the resulting graph is a rooted tree of n nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array.

python 复制代码
class Solution:

    def __init__(self):
        self.n = 1010
        self.father = [i for i in range(self.n)]


    def find(self, u: int):
        """
        并查集里寻根的过程
        """
        if u == self.father[u]:
            return u
        self.father[u] = self.find(self.father[u])
        return self.father[u]

    def join(self, u: int, v: int):
        """
        将v->u 这条边加入并查集
        """
        u = self.find(u)
        v = self.find(v)
        if u == v : return
        self.father[v] = u
        pass


    def same(self, u: int, v: int ):
        """
        判断 u 和 v是否找到同一个根,本题用不上
        """
        u = self.find(u)
        v = self.find(v)
        return u == v

    def init_father(self):
        self.father = [i for i in range(self.n)]
        pass

    def getRemoveEdge(self, edges: List[List[int]]) -> List[int]:
        """
        在有向图里找到删除的那条边,使其变成树
        """

        self.init_father()
        for i in range(len(edges)):
            if self.same(edges[i][0], edges[i][1]): # 构成有向环了,就是要删除的边
                return edges[i]
            self.join(edges[i][0], edges[i][1]);
        return []

    def isTreeAfterRemoveEdge(self, edges: List[List[int]], deleteEdge: int) -> bool:
        """
        删一条边之后判断是不是树
        """

        self.init_father()
        for i in range(len(edges)):
            if i == deleteEdge: continue
            if self.same(edges[i][0], edges[i][1]): #  构成有向环了,一定不是树
                return False
            self.join(edges[i][0], edges[i][1]);
        return True

    def findRedundantDirectedConnection(self, edges: List[List[int]]) -> List[int]:
        inDegree = [0 for i in range(self.n)]

        for i in range(len(edges)):
            inDegree[ edges[i][1] ] += 1

        # 找入度为2的节点所对应的边,注意要倒序,因为优先返回最后出现在二维数组中的答案
        towDegree = []
        for i in range(len(edges))[::-1]:
            if inDegree[edges[i][1]] == 2 :
                towDegree.append(i)

        # 处理图中情况1 和 情况2
        # 如果有入度为2的节点,那么一定是两条边里删一个,看删哪个可以构成树
        if len(towDegree) > 0:
            if(self.isTreeAfterRemoveEdge(edges, towDegree[0])) :
                return edges[towDegree[0]]
            return edges[towDegree[1]]

        # 明确没有入度为2的情况,那么一定有有向环,找到构成环的边返回就可以了
        return self.getRemoveEdge(edges)
相关推荐
FL162386312914 小时前
[C#][winform]基于yolov8的水表读数检测与识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
开发语言·yolo·c#
cnxy18816 小时前
围棋对弈Python程序开发完整指南:步骤1 - 棋盘基础框架搭建
开发语言·python
Nonoas17 小时前
动态代理:发布订阅的高级玩法
java·ide·intellij-idea
程序员-周李斌18 小时前
Java 死锁
java·开发语言·后端
皮皮林55118 小时前
Prometheus+Grafana,打造强大的监控与可视化平台
java
JasmineWr19 小时前
CompletableFuture相关问题
java·开发语言
零雲19 小时前
java面试:知道java的反射机制吗
java·开发语言·面试
Jeremy爱编码19 小时前
实现 Trie (前缀树)
开发语言·c#
laocooon52385788619 小时前
插入法排序 python
开发语言·python·算法
你的冰西瓜19 小时前
C++中的list容器详解
开发语言·c++·stl·list