论文阅读——ScanQA

ScanQA: 3D Question Answering for Spatial Scene Understanding

输入:点云P和问题Q,输出:答案A

点云p由三维坐标点组成。本文模型使用额外的点云特征:点云高度、颜色、法线和多视图图像特征,这些特征将 2D 外观特征投影到点云上。将上面这些特征结合,作为模型的3d特征。

ScanQA model网络结构:

模型包括3D &language encoder, 3D & language fusion, and object localization & QA layers

VoteNet的骨干网络是PointNet++,VoteNet的输入是3d特征,输出的是物体候选区域,然后使用非线性层候选物体的表示。

transformer encoder提供K和V

Fusion是一个带有注意力的两层MLP

最上面一层目标定位Object localization module模块是用于决定VoteNet输出的目标框属于该问题的最大似然,也就是,网络会生成很多框,但是只有一部分是和问题相关的,这个模块要把它选出来。使用CEloss。

Object classification module预测了什么物体是和问题有关系的。CEloss。

Answer classification module预测问题的答案。

LOSS:

VoteNet有个检测损失Ldet,还有最上面三个模块的定位损失Lloc,分类损失Lobj,答案损失Lans,四者相加。L = Lans + Lobj + Lloc + Ldet

相关推荐
AI_56781 小时前
SQL性能优化全景指南:从量子执行计划到自适应索引的终极实践
数据库·人工智能·学习·adb
cyyt1 小时前
深度学习周报(2.2~2.8)
人工智能·深度学习
阿杰学AI1 小时前
AI核心知识92——大语言模型之 Self-Attention Mechanism(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·transformer·自注意力机制
陈天伟教授1 小时前
人工智能应用- 语言处理:03.机器翻译:规则方法
人工智能·自然语言处理·机器翻译
Σίσυφος19001 小时前
PCL 姿态估计 RANSAC + SVD(基于特征匹配)
人工智能·机器学习
Warren2Lynch2 小时前
C4 vs UML:从入门到结合使用的完整指南(含 Visual Paradigm AI 实操)
人工智能·机器学习·uml
Ryan老房2 小时前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居
2401_836235862 小时前
财务报表识别产品:从“数据搬运”到“智能决策”的技术革命
人工智能·科技·深度学习·ocr·生活
明明如月学长2 小时前
全网最火的 Agent Skills 都在这了!这 7 个宝藏市场建议收藏
人工智能