Kafka 如何保证高可用?

Kafka 的基本架构组成是:由多个 broker 组成一个集群,每个 broker 是一个节点;当创建一个 topic 时,这个 topic 会被划分为多个 partition,每个 partition 可以存在于不同的 broker 上,每个 partition 只存放一部分数据。

这就是天然的分布式消息队列,就是说一个 topic 的数据,是分散放在多个机器上的,每个机器就放一部分数据

在 Kafka 0.8 版本之前,是没有 HA 机制的,当任何一个 broker 所在节点宕机了,这个 broker 上的 partition 就无法提供读写服务,所以这个版本之前,Kafka 没有什么高可用性可言。

在 Kafka 0.8 以后,提供了 HA 机制,就是 replica 副本机制。每个 partition 上的数据都会同步到其它机器,形成自己的多个 replica 副本。所有 replica 会选举一个 leader 出来,消息的生产者和消费者都跟这个 leader 打交道,其他 replica 作为 follower。写的时候,leader 会负责把数据同步到所有 follower 上去,读的时候就直接读 leader 上的数据即可。Kafka 负责均匀的将一个 partition 的所有 replica 分布在不同的机器上,这样才可以提高容错性。

拥有了 replica 副本机制,如果某个 broker 宕机了,这个 broker 上的 partition 在其他机器上还存在副本。如果这个宕机的 broker 上面有某个 partition 的 leader,那么此时会从其 follower 中重新选举一个新的 leader 出来,这个新的 leader 会继续提供读写服务,这就有达到了所谓的高可用性。

写数据的时候,生产者只将数据写入 leader 节点,leader 会将数据写入本地磁盘,接着其他 follower 会主动从 leader 来拉取数据,follower 同步好数据了,就会发送 ack 给 leader,leader 收到所有 follower 的 ack 之后,就会返回写成功的消息给生产者。

消费数据的时候,消费者只会从 leader 节点去读取消息,但是只有当一个消息已经被所有 follower 都同步成功返回 ack 的时候,这个消息才会被消费者读到。

相关推荐
西***63478 小时前
从信号处理到智能协同:高清混合矩阵全链路技术拆解,分布式系统十大趋势抢先看
网络·分布式·矩阵
阿维的博客日记8 小时前
从夯到拉的Redis和MySQL双写一致性解决方案排名
redis·分布式·mysql
好玩的Matlab(NCEPU)9 小时前
消息队列RabbitMQ、Kafka、ActiveMQ 、Redis、 ZeroMQ、Apache Pulsar对比和如何使用
kafka·rabbitmq·activemq
笨蛋少年派12 小时前
zookeeper简介
分布式·zookeeper·云原生
鸽鸽程序猿12 小时前
【RabbitMQ】简介
分布式·rabbitmq
在未来等你12 小时前
Kafka面试精讲 Day 29:版本升级与平滑迁移
大数据·分布式·面试·kafka·消息队列
在未来等你13 小时前
Kafka面试精讲 Day 30:Kafka面试真题解析与答题技巧
大数据·分布式·面试·kafka·消息队列
在未来等你15 小时前
Elasticsearch面试精讲 Day 30:Elasticsearch面试真题解析与答题技巧
大数据·分布式·elasticsearch·搜索引擎·面试
在未来等你16 小时前
Elasticsearch面试精讲 Day 27:备份恢复与灾难恢复
大数据·分布式·elasticsearch·搜索引擎·面试