深度学习建模从零开始步骤流程

深度学习建模从零开始步骤流程

步骤如下:

  1. 环境准备
  2. 三方库安装
  3. 建模开发

环境准备

Anaconda安装:

Anaconda下载网址,下载win10下的64位版本。
清华镜像站

下载完毕后点击安装,一直点确定或下一步

到上图点击 Just me,因为只自己编程使用

上图,可在自己想要装的盘内创建Anaconda文件夹,然后作为安装目录。如我在D盘创建Anaconda文件夹,安装时选中该文件夹作为安装目录。

上图,选择第二个便好,第一个环境变量配置请看下文。

然后点击 Install进行安装,等待安装完毕,进行环境变量配置。

关于 Anaconda环境变量配置:

找到Anaconda安装目录,如:E:\Anaconda,E:\Anaconda\Scripts

将上述两个地址,添加至环境变量 Path 尾部。

三方库安装

在完成环境准备之后,在cmd中输入以下命令查看当前环境中已安装的三方库:

要进行深度学习开发,一般需要安装如下三方库:pandas,numpy,keras等,安装方式如下:

根据算法建模所需的三方库,依次使用pip3 install 命令安装便可。

建模开发

根据具体的建模应用场景和数据集,开发程序,训练模型,以电影评论二分类为例,

先使用pip3 install keras 安装深度学习建模库

python 复制代码
import numpy as np
from keras.datasets import imdb

# 数据集准备
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

# 数据向量化
def vectorize_sequences(sequences, dimension=10000):
	results = np.zeros((len(sequences), dimension))
	for i, sequence in enumerate(sequences):
		results[i, sequence] = 1.
	return results
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

# 标签向量化
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')

# 神经网络构建
from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])

# 验证集准备
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]

# 模型训练
history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val))

# 绘制训练精度和验证精度
import matplotlib.pyplot as plt
history_dict = history.history

acc = history_dict['acc']
val_acc = history_dict['val_acc']
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
相关推荐
carpell10 分钟前
【语义分割专栏】3:Segnet实战篇(附上完整可运行的代码pytorch)
人工智能·python·深度学习·计算机视觉·语义分割
智能汽车人23 分钟前
自动驾驶---SD图导航的规划策略
人工智能·机器学习·自动驾驶
mengyoufengyu32 分钟前
DeepSeek11-Ollama + Open WebUI 搭建本地 RAG 知识库全流程指南
人工智能·深度学习·deepseek
Tianyanxiao33 分钟前
华为×小鹏战略合作:破局智能驾驶深水区的商业逻辑深度解析
大数据·人工智能·经验分享·华为·金融·数据分析
rit84324991 小时前
基于BP神经网络的语音特征信号分类
人工智能·神经网络·分类
一点.点1 小时前
AlphaDrive:通过强化学习和推理释放自动驾驶中 VLM 的力量
人工智能·机器学习·自动驾驶
科技小E1 小时前
口罩佩戴检测算法AI智能分析网关V4工厂/工业等多场景守护公共卫生安全
网络·人工智能
说私域1 小时前
基于定制开发开源AI智能名片S2B2C商城小程序的首屏组件优化策略研究
人工智能·小程序·开源·零售
vlln1 小时前
2025年与2030年AI及AI智能体 (Agent) 市场份额分析报告
人工智能·深度学习·神经网络·ai
GiantGo2 小时前
信息最大化(Information Maximization)
深度学习·无监督学习·信息最大化