数据分析基础之《numpy(5)—合并与分割》

了解即可,用panads

一、作用

实现数据的切分和合并,将数据进行切分合并处理

二、合并

1、numpy.hstack

水平拼接

python 复制代码
# hstack 水平拼接
a = np.array((1,2,3))
b = np.array((2,3,4))
np.hstack((a, b))

a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.hstack((a, b))

2、numpy.vstack

竖直拼接

python 复制代码
# vstack 竖直拼接
a = np.array((1,2,3))
b = np.array((2,3,4))
np.vstack((a, b))

a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.vstack((a, b))

3、numpy.concatenate((a1,a2), axis=0|1)

指定轴,选择竖直或水平拼接

python 复制代码
# concatenate
a = np.array([[1,2], [3,4]])
b = np.array([[5,6]])
np.concatenate((a,b), axis=0)

np.concatenate((a,b.T), axis=1)

三、分割

1、numpy.split(ary, indices_or_sections, axis)

沿指定的轴将数组分割为多个子数组

参数说明:

ary:被分割的数组

indices_or_sections:若是一个整数,代表用该整数平均切分,若是一个数组,则代表沿轴切分的位置(左开右闭)

axis:默认为0,表示横向切分;为1时表示纵向切分

python 复制代码
# 分割
x = np.arange(9.0)

x

np.split(x, 3)

np.split(x, [3,5,6,10])
相关推荐
计算机毕设定制辅导-无忧学长8 小时前
Grafana 与 InfluxDB 可视化深度集成(二)
信息可视化·数据分析·grafana
鹏多多.15 小时前
flutter-使用device_info_plus获取手机设备信息完整指南
android·前端·flutter·ios·数据分析·前端框架
芦骁骏1 天前
自动处理考勤表——如何使用Power Query,步步为营,一点点探索自定义函数
数据分析·excel·powerbi
柑木1 天前
隐私计算-SecretFlow/SCQL-SCQL的两种部署模式
后端·安全·数据分析
计算机源码社1 天前
分享一个基于Hadoop的二手房销售签约数据分析与可视化系统,基于Python可视化的二手房销售数据分析平台
大数据·hadoop·python·数据分析·毕业设计项目·毕业设计源码·计算机毕设选题
Kay_Liang2 天前
从聚合到透视:SQL 窗口函数的系统解读
大数据·数据库·sql·mysql·数据分析·窗口函数
我要学习别拦我~2 天前
读《精益数据分析》:黏性(Stickiness)—— 验证解决方案是否留住用户
经验分享·数据分析
davawang2 天前
程序自动化vs人工手动处理
数据库·数据分析·企业文化
计算机源码社2 天前
分享一个基于Hadoop+spark的超市销售数据分析与可视化系统,超市顾客消费行为分析系统的设计与实现
大数据·hadoop·数据分析·spark·计算机毕业设计源码·计算机毕设选题·大数据选题推荐
码界筑梦坊2 天前
135-基于Spark的抖音数据分析热度预测系统
大数据·python·数据分析·spark·毕业设计·echarts