数据分析基础之《numpy(5)—合并与分割》

了解即可,用panads

一、作用

实现数据的切分和合并,将数据进行切分合并处理

二、合并

1、numpy.hstack

水平拼接

python 复制代码
# hstack 水平拼接
a = np.array((1,2,3))
b = np.array((2,3,4))
np.hstack((a, b))

a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.hstack((a, b))

2、numpy.vstack

竖直拼接

python 复制代码
# vstack 竖直拼接
a = np.array((1,2,3))
b = np.array((2,3,4))
np.vstack((a, b))

a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.vstack((a, b))

3、numpy.concatenate((a1,a2), axis=0|1)

指定轴,选择竖直或水平拼接

python 复制代码
# concatenate
a = np.array([[1,2], [3,4]])
b = np.array([[5,6]])
np.concatenate((a,b), axis=0)

np.concatenate((a,b.T), axis=1)

三、分割

1、numpy.split(ary, indices_or_sections, axis)

沿指定的轴将数组分割为多个子数组

参数说明:

ary:被分割的数组

indices_or_sections:若是一个整数,代表用该整数平均切分,若是一个数组,则代表沿轴切分的位置(左开右闭)

axis:默认为0,表示横向切分;为1时表示纵向切分

python 复制代码
# 分割
x = np.arange(9.0)

x

np.split(x, 3)

np.split(x, [3,5,6,10])
相关推荐
蓝婷儿5 小时前
Python 数据分析与可视化 Day 14 - 建模复盘 + 多模型评估对比(逻辑回归 vs 决策树)
python·数据分析·逻辑回归
好开心啊没烦恼7 小时前
Python:线性代数,向量内积谐音记忆。
开发语言·python·线性代数·数据挖掘·数据分析
过期的秋刀鱼!7 小时前
用“做饭”理解数据分析流程(Excel三件套实战)
数据挖掘·数据分析·excel·powerbi·数据分析入门
大数据CLUB10 小时前
基于spark的航班价格分析预测及可视化
大数据·hadoop·分布式·数据分析·spark·数据可视化
程序员阿超的博客11 小时前
Python 数据分析与机器学习入门 (八):用 Scikit-Learn 跑通第一个机器学习模型
python·机器学习·数据分析·scikit-learn·入门教程·python教程
蓝婷儿10 天前
Python 数据分析与可视化 Day 2 - 数据清洗基础
开发语言·python·数据分析
蓝婷儿10 天前
Python 数据分析与可视化 Day 5 - 数据可视化入门(Matplotlib & Seaborn)
python·信息可视化·数据分析
大数据CLUB10 天前
基于pyspark的北京历史天气数据分析及可视化_离线
大数据·hadoop·数据挖掘·数据分析·spark
深空数字孪生10 天前
金融行业B端系统布局实战:风险管控与数据可视化的定制方案
信息可视化·金融·数据分析