tensorflow入门 自定义模型

前面说了自定义的层,接下来自定义模型,我们以下图为例子

这个模型没啥意义,单纯是为了写代码实现这个模型

首先呢,我们看有几个部分,dense不需要我们实现了,我们就实现Res,为了实现那个*3,我们注意这个res可能需要多个res堆叠。

python 复制代码
class ResBlock(keras.layers.Layer):
    def __init__(self, n_layers, n_neurons, **kwargs):
        super().__init__(**kwargs)
        self.hidden =[keras.layers.Dense(n_neurons,activation='elu',kernel_initializer='he_normal')
                          for _ in range(n_layers)
                      ]
    def call(self, inputs):
        Z = inputs
        for layer in self.hidden:
            Z = layer(Z)
        return inputs + Z

这样我们就能实现一个可以循环的Res了,call是必须的,因为在计算的时候需要它

如果我们写得再详细一点,可能要加入built,如果需要保存和加载模型,我们需要get_congit和save_congit,总之,基本的样子就是如此。

为了防止搞错,解释以下为什么没有使用built,是为了偷懒。

下面我们构建模型的时候,会指定输入的维度,其实再通用的情况下,我们根本不知道输入的维度,built会自动推断输入维度,所有本来应该写个built的,但是睡觉时间到了。

然后我们基于上面的自定义层,实现左边的模型

python 复制代码
def ResModel(keras.Model):
    def __init__(self, out, **kwargs):
        super().__init__(*kwargs)
        self.hidden1 = keras,layers,Dense(30, activation='elu', kernel_initializer='he_normal')
        self.block1 = ResBlock(2,10)
        self.block2 = ResBlock(2,20)
        self.out = keras,layers,Dense(out)
    
    def call(self, inputs):
        Z = self.hidden1(inputs)
        for _ in range(4):
            Z = self.block1(Z)
        Z = self.block2(Z)
        return self.out(Z)

我觉得在此以及无需多言了。睡觉睡觉。

相关推荐
读创商闻18 分钟前
2026主流商旅平台Top 5测评与选型解析:制造业企业的商旅治理逻辑
大数据·人工智能
天一生水water28 分钟前
基于FFT的频域故障诊断
人工智能·算法·智慧油田
宇擎智脑科技34 分钟前
OpenClaw:开源多渠道AI个人助手的技术架构与实践分析
人工智能·智能体
码农小韩40 分钟前
AIAgent应用开发——DeepSeek分析(一)
人工智能·python·深度学习·agent·强化学习
【赫兹威客】浩哥1 小时前
半导体芯片缺陷检测数据集分享及多版本YOLO模型训练验证
人工智能·计算机视觉·目标跟踪
学Linux的语莫1 小时前
skills的使用
java·数据库·python
硅基流动1 小时前
硅基流动 × Open Course:更懂你的个性化智能学伴
人工智能
大模型玩家七七1 小时前
关系记忆不是越完整越好:chunk size 的隐性代价
java·前端·数据库·人工智能·深度学习·算法·oracle
Elastic 中国社区官方博客1 小时前
Elasticsearch:使用 Workflow 查询天气,发送消息到 Slack
大数据·运维·人工智能·elasticsearch·搜索引擎·ai
康康的AI博客1 小时前
AI技术驱动电商内容与策略优化:如何提升客户参与度与品牌价值
大数据·人工智能