tensorflow入门 自定义模型

前面说了自定义的层,接下来自定义模型,我们以下图为例子

这个模型没啥意义,单纯是为了写代码实现这个模型

首先呢,我们看有几个部分,dense不需要我们实现了,我们就实现Res,为了实现那个*3,我们注意这个res可能需要多个res堆叠。

python 复制代码
class ResBlock(keras.layers.Layer):
    def __init__(self, n_layers, n_neurons, **kwargs):
        super().__init__(**kwargs)
        self.hidden =[keras.layers.Dense(n_neurons,activation='elu',kernel_initializer='he_normal')
                          for _ in range(n_layers)
                      ]
    def call(self, inputs):
        Z = inputs
        for layer in self.hidden:
            Z = layer(Z)
        return inputs + Z

这样我们就能实现一个可以循环的Res了,call是必须的,因为在计算的时候需要它

如果我们写得再详细一点,可能要加入built,如果需要保存和加载模型,我们需要get_congit和save_congit,总之,基本的样子就是如此。

为了防止搞错,解释以下为什么没有使用built,是为了偷懒。

下面我们构建模型的时候,会指定输入的维度,其实再通用的情况下,我们根本不知道输入的维度,built会自动推断输入维度,所有本来应该写个built的,但是睡觉时间到了。

然后我们基于上面的自定义层,实现左边的模型

python 复制代码
def ResModel(keras.Model):
    def __init__(self, out, **kwargs):
        super().__init__(*kwargs)
        self.hidden1 = keras,layers,Dense(30, activation='elu', kernel_initializer='he_normal')
        self.block1 = ResBlock(2,10)
        self.block2 = ResBlock(2,20)
        self.out = keras,layers,Dense(out)
    
    def call(self, inputs):
        Z = self.hidden1(inputs)
        for _ in range(4):
            Z = self.block1(Z)
        Z = self.block2(Z)
        return self.out(Z)

我觉得在此以及无需多言了。睡觉睡觉。

相关推荐
ㄣ知冷煖★几秒前
基于openEuler操作系统的图神经网络应用开发:以Cora数据集节点分类为例的研究与实践
python
像风一样自由2020几秒前
LSTM-KNN融合模型:让AI既有记忆又会“查字典“
人工智能·rnn·lstm
祝余Eleanor7 分钟前
Day32 深入理解SHAP图
人工智能·python·机器学习
沃达德软件7 分钟前
警务大数据挖掘技术
大数据·人工智能·数据挖掘
边缘计算社区11 分钟前
Nature 最新论文:边缘计算“任务卸载”新突破,时延降低 32.5% 的 MADRL 算法来了
人工智能·边缘计算
enjoy编程12 分钟前
Spring-AI 利用KeywordMetadataEnricher & SummaryMetadataEnricher 构建文本智能元数据
java·人工智能·spring
AI虐我千百遍13 分钟前
如何使用Kontext ComfyUI
人工智能
还是大剑师兰特23 分钟前
利用AI辅助,快速生成gltf文件
人工智能
ModestCoder_26 分钟前
强化学习 Policy 的 Tracking 能力全解析,以Legged_gym为例解说Policy的训练流程
人工智能·算法·自然语言处理·机器人·具身智能
hg011827 分钟前
豫非搭建“黄金水道” 河南首个海外港口枢纽启动试运营
大数据·人工智能·物联网