tensorflow入门 自定义模型

前面说了自定义的层,接下来自定义模型,我们以下图为例子

这个模型没啥意义,单纯是为了写代码实现这个模型

首先呢,我们看有几个部分,dense不需要我们实现了,我们就实现Res,为了实现那个*3,我们注意这个res可能需要多个res堆叠。

python 复制代码
class ResBlock(keras.layers.Layer):
    def __init__(self, n_layers, n_neurons, **kwargs):
        super().__init__(**kwargs)
        self.hidden =[keras.layers.Dense(n_neurons,activation='elu',kernel_initializer='he_normal')
                          for _ in range(n_layers)
                      ]
    def call(self, inputs):
        Z = inputs
        for layer in self.hidden:
            Z = layer(Z)
        return inputs + Z

这样我们就能实现一个可以循环的Res了,call是必须的,因为在计算的时候需要它

如果我们写得再详细一点,可能要加入built,如果需要保存和加载模型,我们需要get_congit和save_congit,总之,基本的样子就是如此。

为了防止搞错,解释以下为什么没有使用built,是为了偷懒。

下面我们构建模型的时候,会指定输入的维度,其实再通用的情况下,我们根本不知道输入的维度,built会自动推断输入维度,所有本来应该写个built的,但是睡觉时间到了。

然后我们基于上面的自定义层,实现左边的模型

python 复制代码
def ResModel(keras.Model):
    def __init__(self, out, **kwargs):
        super().__init__(*kwargs)
        self.hidden1 = keras,layers,Dense(30, activation='elu', kernel_initializer='he_normal')
        self.block1 = ResBlock(2,10)
        self.block2 = ResBlock(2,20)
        self.out = keras,layers,Dense(out)
    
    def call(self, inputs):
        Z = self.hidden1(inputs)
        for _ in range(4):
            Z = self.block1(Z)
        Z = self.block2(Z)
        return self.out(Z)

我觉得在此以及无需多言了。睡觉睡觉。

相关推荐
CareyWYR29 分钟前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信2 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20092 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟2 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
小糖学代码3 小时前
LLM系列:1.python入门:3.布尔型对象
linux·开发语言·python
央链知播3 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训3 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
Data_agent3 小时前
1688获得1688店铺详情API,python请求示例
开发语言·爬虫·python
YIN_尹3 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55184 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化