tensorflow入门 自定义模型

前面说了自定义的层,接下来自定义模型,我们以下图为例子

这个模型没啥意义,单纯是为了写代码实现这个模型

首先呢,我们看有几个部分,dense不需要我们实现了,我们就实现Res,为了实现那个*3,我们注意这个res可能需要多个res堆叠。

python 复制代码
class ResBlock(keras.layers.Layer):
    def __init__(self, n_layers, n_neurons, **kwargs):
        super().__init__(**kwargs)
        self.hidden =[keras.layers.Dense(n_neurons,activation='elu',kernel_initializer='he_normal')
                          for _ in range(n_layers)
                      ]
    def call(self, inputs):
        Z = inputs
        for layer in self.hidden:
            Z = layer(Z)
        return inputs + Z

这样我们就能实现一个可以循环的Res了,call是必须的,因为在计算的时候需要它

如果我们写得再详细一点,可能要加入built,如果需要保存和加载模型,我们需要get_congit和save_congit,总之,基本的样子就是如此。

为了防止搞错,解释以下为什么没有使用built,是为了偷懒。

下面我们构建模型的时候,会指定输入的维度,其实再通用的情况下,我们根本不知道输入的维度,built会自动推断输入维度,所有本来应该写个built的,但是睡觉时间到了。

然后我们基于上面的自定义层,实现左边的模型

python 复制代码
def ResModel(keras.Model):
    def __init__(self, out, **kwargs):
        super().__init__(*kwargs)
        self.hidden1 = keras,layers,Dense(30, activation='elu', kernel_initializer='he_normal')
        self.block1 = ResBlock(2,10)
        self.block2 = ResBlock(2,20)
        self.out = keras,layers,Dense(out)
    
    def call(self, inputs):
        Z = self.hidden1(inputs)
        for _ in range(4):
            Z = self.block1(Z)
        Z = self.block2(Z)
        return self.out(Z)

我觉得在此以及无需多言了。睡觉睡觉。

相关推荐
BlockWay34 分钟前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全
虹科网络安全41 分钟前
艾体宝案例 | 从关系到语义:ArangoDB如何支撑高精度水军识别
人工智能
大霸王龙1 小时前
MinIO 对象存储系统架构图集
人工智能·llm·minio
汗流浃背了吧,老弟!1 小时前
什么是ResNet
人工智能·深度学习
vibag1 小时前
构建智能体与工具调用
python·语言模型·大模型·langgraph
小途软件1 小时前
高校宿舍访客预约管理平台开发
java·人工智能·pytorch·python·深度学习·语言模型
-dcr1 小时前
49.python自动化
运维·python·自动化
code bean1 小时前
Flask图片服务在不同网络接口下的路径解析问题及解决方案
后端·python·flask
人工智能培训1 小时前
10分钟了解向量数据库(3)
人工智能·大模型·知识图谱·强化学习·智能体搭建
华清远见成都中心2 小时前
人工智能要学习的课程有哪些?
人工智能·学习