tensorflow入门 自定义模型

前面说了自定义的层,接下来自定义模型,我们以下图为例子

这个模型没啥意义,单纯是为了写代码实现这个模型

首先呢,我们看有几个部分,dense不需要我们实现了,我们就实现Res,为了实现那个*3,我们注意这个res可能需要多个res堆叠。

python 复制代码
class ResBlock(keras.layers.Layer):
    def __init__(self, n_layers, n_neurons, **kwargs):
        super().__init__(**kwargs)
        self.hidden =[keras.layers.Dense(n_neurons,activation='elu',kernel_initializer='he_normal')
                          for _ in range(n_layers)
                      ]
    def call(self, inputs):
        Z = inputs
        for layer in self.hidden:
            Z = layer(Z)
        return inputs + Z

这样我们就能实现一个可以循环的Res了,call是必须的,因为在计算的时候需要它

如果我们写得再详细一点,可能要加入built,如果需要保存和加载模型,我们需要get_congit和save_congit,总之,基本的样子就是如此。

为了防止搞错,解释以下为什么没有使用built,是为了偷懒。

下面我们构建模型的时候,会指定输入的维度,其实再通用的情况下,我们根本不知道输入的维度,built会自动推断输入维度,所有本来应该写个built的,但是睡觉时间到了。

然后我们基于上面的自定义层,实现左边的模型

python 复制代码
def ResModel(keras.Model):
    def __init__(self, out, **kwargs):
        super().__init__(*kwargs)
        self.hidden1 = keras,layers,Dense(30, activation='elu', kernel_initializer='he_normal')
        self.block1 = ResBlock(2,10)
        self.block2 = ResBlock(2,20)
        self.out = keras,layers,Dense(out)
    
    def call(self, inputs):
        Z = self.hidden1(inputs)
        for _ in range(4):
            Z = self.block1(Z)
        Z = self.block2(Z)
        return self.out(Z)

我觉得在此以及无需多言了。睡觉睡觉。

相关推荐
wu_jing_sheng013 分钟前
深度学习入门:揭开神经网络的神秘面纱(附PyTorch实战)
python
PawSQL14 分钟前
智能SQL优化工具 PawSQL 月度更新 | 2025年10月
数据库·人工智能·sql·sql优化·pawsql
Ace_317508877617 分钟前
淘宝店铺全量商品接口实战:分类穿透采集与增量同步的技术方案
大数据·数据库·python
计算机毕业设计指导24 分钟前
YOLOv5+DeepSORT目标检测
人工智能·yolo·目标检测
逻极33 分钟前
AI 规范驱动开发“三剑客”深度对比:Spec-Kit、Kiro 与 OpenSpec 实战指南
人工智能·驱动开发·ai·agent
逻极35 分钟前
Claude Code 实战:Spec-Kit、Kiro、OpenSpec 规范驱动开发三剑客
ide·人工智能·驱动开发·ai·自动化
xixixi7777737 分钟前
了解一下LSTM:长短期记忆网络(改进的RNN)
人工智能·深度学习·机器学习
能来帮帮蒟蒻吗37 分钟前
深度学习(1)—— 基本概念
人工智能·深度学习
LeonDL16840 分钟前
基于YOLO11深度学习的电动车头盔检测系统【Python源码+Pyqt5界面+数据集+安装使用教程+训练代码】【附下载链接】
人工智能·python·深度学习·pyqt5·yolo数据集·电动车头盔检测系统·yolo11深度学习
carver w44 分钟前
彻底理解传统卷积,深度可分离卷积
人工智能·深度学习·计算机视觉