Pooling方法总结(语音识别)

Pooling layer将变长的frame-level features转换为一个定长的向量。

1. Statistics Pooling

链接: http://danielpovey.com/files/2017_interspeech_embeddings.pdf

The default pooling method for x-vector is statistics pooling.

The statistics pooling layer calculates the mean vector µ as well as the second-order statistics as the standard deviation vector σ over frame-level features ht (t = 1, · · · , T ).

2. Attentive Statistics Pooling

链接: https://arxiv.org/pdf/1803.10963.pdf

在一段话中,往往某些帧的帧级特征比其他帧的特征更为独特重要,因此使用attention赋予每帧feature不同的权值。

其中f(.)代表非线性变换,如tanh or ReLU function。

最后将每帧特征加劝求和

3. Self-Attentive pooling

链接:https://danielpovey.com/files/2018_interspeech_xvector_attention.pdf

4. Self Multi-Head Attention pooling

论文:Multi-Resolution Multi-Head Attention in Deep Speaker Embedding | IEEE Conference Publication | IEEE Xplore

5. NetVLAD

论文:

https://arxiv.org/pdf/1902.10107.pdf

https://arxiv.org/pdf/1511.07247.pdf

更详细的解释参考:从VLAD到NetVLAD,再到NeXtVlad - 知乎

6. Learnable Dictionary Encoding (LDE)

论文:https://arxiv.org/pdf/1804.05160.pdf

we introduce two groups of learnable parameters. One is the dictionary component center, noted as µ = {µ1, µ2 · · · µc}. The other one is assigned weights, noted as w.

where the smoothing factor for each dictionary center is learnable.

7. Attentive Bilinear Pooling (ABP) - Interspeech 2020

论文:https://www.isca-speech.org/archive/Interspeech_2020/pdfs/1922.pdf

Let be the frame-level feature map captured by the hidden layer below the self-attention layer, where L and D are the number of frames and feature dimension respectively. Then the attention map can be obtained by feeding H into a 1×1 convolutional layer followed by softmax non-linear activation, where K is the number of attention heads. The 1st-order and 2nd-order attentive statistics of H, denoted by µ and , can be computed similar as crosslayer bilinear pooling, which is

where T1(x) is the operation of reshaping x into a vector, and T2(x) includes a signed square-root step and a L2- normalization step. The output of ABP is the concatenation of µ and

8. Short-time Spectral Pooling (STSP) - ICASSP 2021

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9414094&tag=1https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9414094&tag=1From a Fourier perspective, statistics pooling only exploits the DC (zero-frequency) components in the spectral domain, whereas STSP incorporates more spectral components besides the DC ones during aggregation and is able to retain richer speaker information.

  1. 将卷积层提取到的特征做STFT(Short Time Fourier Transorm),每一个channel得到一个二维频谱图。

  2. 计算averaged spectral array

  1. 计算second-order spectral statistics
  1. 将两个特征进行拼接(C is the number of channels)

9. Multi-head attentive STSP (IEEE TRANS. ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 2022)

One limitation of STSP is that the brute average of the spectrograms along the temporal axis ignores the importance of individual windowed segments when computing the spectral representations. In other words, all segments in a specific spectrogram were treated with equal importance.

相关推荐
LiuPig刘皮哥3 小时前
llamaindex 使用火山embedding模型
windows·python·embedding
Java后端的Ai之路18 小时前
【AI大模型开发】-Embedding 与向量数据库:从基础概念到实战应用
数据库·人工智能·embedding·向量数据库·ai应用开发工程师
指掀涛澜天下惊1 天前
AI 基础知识八 词嵌入(word embedding)
人工智能·embedding·词嵌⼊
AI浩1 天前
Qwen3-VL-Embedding 和 Qwen3-VL-Reranker:用于最先进多模态检索和排序的统一框架
embedding
DisonTangor5 天前
阿里Qwen开源Qwen3-VL-Embedding 和 Qwen3-VL-Reranker
人工智能·搜索引擎·开源·aigc·embedding
深色風信子7 天前
SpringAi 加载 ONNX Embedding
embedding·onnx·springai
Lkygo11 天前
Embedding 和 Reranker 模型
人工智能·embedding·vllm·sglang
love39814677912 天前
Embedding,rerank,lora区别
embedding
CodeCaptain13 天前
huggingface.co下载Qwen3-Embedding模型的步骤
经验分享·embedding·dify
liuc031713 天前
调用embedding生成向量并存储到milvus中,进行查询
embedding·milvus