计算机视觉技术-常用的图像增广方法图像翻转和裁剪

在对常用图像增广方法的探索时,我们将使用下面这个尺寸为400×500的图像作为示例。

python 复制代码
d2l.set_figsize()
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());

07:07:52\] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU

大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply。 此函数在输入图像img上多次运行图像增广方法aug并显示所有结果。

python 复制代码
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)

左右翻转图像通常不会改变对象的类别。这是最早且最广泛使用的图像增广方法之一。 接下来,我们使用transforms模块来创建RandomFlipLeftRight实例,这样就各有50%的几率使图像向左或向右翻转。

python 复制代码
apply(img, torchvision.transforms.RandomHorizontalFlip())

上下翻转图像不如左右图像翻转那样常用。但是,至少对于这个示例图像,上下翻转不会妨碍识别。接下来,我们创建一个RandomFlipTopBottom实例,使图像各有50%的几率向上或向下翻转。

pythyon 复制代码
apply(img, torchvision.transforms.RandomVerticalFlip())

我们可以通过对图像进行随机裁剪,使物体以不同的比例出现在图像的不同位置。 这也可以降低模型对目标位置的敏感性。

下面的代码将随机裁剪一个面积为原始面积10%到100%的区域,该区域的宽高比从0.5~2之间随机取值。 然后,区域的宽度和高度都被缩放到200像素。 在本节中(除非另有说明),a和b之间的随机数指的是在区间[a,b]中通过均匀采样获得的连续值。

python 复制代码
shape_aug = torchvision.transforms.RandomResizedCrop(
    (200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
相关推荐
Rui_Freely2 小时前
Vins-Fusion之ROS2(节点创建、订阅者、发布者)(一)
人工智能·计算机视觉
睡醒了叭4 小时前
图像分割-深度学习-FCN模型
人工智能·深度学习·计算机视觉
keep_learning11110 小时前
Z-Image模型架构全解析
人工智能·算法·计算机视觉·大模型·多模态
奔袭的算法工程师11 小时前
论文解读--FocalFormer3D : Focusing on Hard Instance for 3D Object Detection
人工智能·目标检测·计算机视觉
only-lucky12 小时前
OpenCV(第一章)
人工智能·opencv·计算机视觉
C666688815 小时前
机器视觉常见相机类型
数码相机·计算机视觉
AndrewHZ15 小时前
【图像处理基石】如何高质量地生成一张庆祝元旦的图片?
图像处理·人工智能·opencv·算法·计算机视觉·生成式模型·genai
柠檬071115 小时前
vector<cv::point2f>如何快速转成opencv mat
人工智能·opencv·计算机视觉
Pyeako15 小时前
Opencv计算机视觉
人工智能·python·深度学习·opencv·计算机视觉
学习3人组15 小时前
目标检测训练常见问题排查清单
人工智能·目标检测·计算机视觉