计算机视觉技术-常用的图像增广方法图像翻转和裁剪

在对常用图像增广方法的探索时,我们将使用下面这个尺寸为400×500的图像作为示例。

python 复制代码
d2l.set_figsize()
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());

07:07:52\] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU

大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply。 此函数在输入图像img上多次运行图像增广方法aug并显示所有结果。

python 复制代码
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)

左右翻转图像通常不会改变对象的类别。这是最早且最广泛使用的图像增广方法之一。 接下来,我们使用transforms模块来创建RandomFlipLeftRight实例,这样就各有50%的几率使图像向左或向右翻转。

python 复制代码
apply(img, torchvision.transforms.RandomHorizontalFlip())

上下翻转图像不如左右图像翻转那样常用。但是,至少对于这个示例图像,上下翻转不会妨碍识别。接下来,我们创建一个RandomFlipTopBottom实例,使图像各有50%的几率向上或向下翻转。

pythyon 复制代码
apply(img, torchvision.transforms.RandomVerticalFlip())

我们可以通过对图像进行随机裁剪,使物体以不同的比例出现在图像的不同位置。 这也可以降低模型对目标位置的敏感性。

下面的代码将随机裁剪一个面积为原始面积10%到100%的区域,该区域的宽高比从0.5~2之间随机取值。 然后,区域的宽度和高度都被缩放到200像素。 在本节中(除非另有说明),a和b之间的随机数指的是在区间[a,b]中通过均匀采样获得的连续值。

python 复制代码
shape_aug = torchvision.transforms.RandomResizedCrop(
    (200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
相关推荐
Coding茶水间4 小时前
基于深度学习的学生上课行为检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
AI小怪兽5 小时前
YOLO11-4K:面向4K全景图像实时小目标检测的高效架构
人工智能·目标检测·计算机视觉·目标跟踪·架构
啊阿狸不会拉杆7 小时前
《数字图像处理》第 11 章 - 特征提取
图像处理·人工智能·算法·计算机视觉·数字图像处理
那雨倾城7 小时前
PiscCode实现用 YOLO 给现实世界加上「NPC 血条 HUD」
图像处理·python·算法·yolo·计算机视觉·目标跟踪
再__努力1点7 小时前
LBP纹理特征提取:高鲁棒性的纹理特征算法
开发语言·人工智能·python·算法·计算机视觉
梅如你8 小时前
【网盘直享】最新DEM数据分享(全球/全国/分省12.5m/30m/90m/250m/1000m)
图像处理·人工智能·python·计算机视觉
有Li8 小时前
MIRAGE:针对嘈杂环境鲁棒性的医学图像-文本预训练|文献速递-医疗影像分割与目标检测最新技术
论文阅读·人工智能·深度学习·计算机视觉·文献·医学生
上天夭8 小时前
目标跟踪篇
人工智能·计算机视觉·目标跟踪
胡伯来了8 小时前
12 Transformers - 使用Pipeline处理计算机视觉
人工智能·计算机视觉·transformer·transformers·大数据模型
fie88899 小时前
基于MATLAB的多幅图像拼接
人工智能·计算机视觉·matlab