计算机视觉技术-常用的图像增广方法图像翻转和裁剪

在对常用图像增广方法的探索时,我们将使用下面这个尺寸为400×500的图像作为示例。

python 复制代码
d2l.set_figsize()
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());

[07:07:52] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU

大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply。 此函数在输入图像img上多次运行图像增广方法aug并显示所有结果。

python 复制代码
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)

左右翻转图像通常不会改变对象的类别。这是最早且最广泛使用的图像增广方法之一。 接下来,我们使用transforms模块来创建RandomFlipLeftRight实例,这样就各有50%的几率使图像向左或向右翻转。

python 复制代码
apply(img, torchvision.transforms.RandomHorizontalFlip())

上下翻转图像不如左右图像翻转那样常用。但是,至少对于这个示例图像,上下翻转不会妨碍识别。接下来,我们创建一个RandomFlipTopBottom实例,使图像各有50%的几率向上或向下翻转。

pythyon 复制代码
apply(img, torchvision.transforms.RandomVerticalFlip())

我们可以通过对图像进行随机裁剪,使物体以不同的比例出现在图像的不同位置。 这也可以降低模型对目标位置的敏感性。

下面的代码将随机裁剪一个面积为原始面积10%到100%的区域,该区域的宽高比从0.5~2之间随机取值。 然后,区域的宽度和高度都被缩放到200像素。 在本节中(除非另有说明),a和b之间的随机数指的是在区间[a,b]中通过均匀采样获得的连续值。

python 复制代码
shape_aug = torchvision.transforms.RandomResizedCrop(
    (200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
相关推荐
AomanHao9 小时前
图像质量评价指标-UCIQE-UIQM
图像处理·人工智能·计算机视觉·评价指标
MYT_flyflyfly9 小时前
计算机视觉-尺度不变区域
人工智能·计算机视觉
C#Thread11 小时前
机器视觉--图像的运算(乘法)
图像处理·人工智能·计算机视觉
SKYDROID云卓小助手11 小时前
无人设备遥控器之视频回传篇
网络·人工智能·嵌入式硬件·目标检测·计算机视觉·音视频
佳佳费_13 小时前
浅谈模组-相机鬼像
图像处理·人工智能·计算机视觉
远瞻。13 小时前
[论文阅读] SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution
论文阅读·人工智能·计算机视觉
视觉人机器视觉17 小时前
机器视觉检测中,2D面阵相机和线扫相机的区别
人工智能·数码相机·计算机视觉·3d·视觉检测
Sherlock Ma20 小时前
Step-Video-T2V:阶跃星辰发布最强开源视频生成模型(论文详解)
图像处理·人工智能·深度学习·计算机视觉·ai作画·aigc
西猫雷婶20 小时前
python学opencv|读取图像(七十四)人脸识别:EigenFaces算法
人工智能·opencv·计算机视觉
weixin_513023771 天前
红外图像与可见光图像在目标检测时的区别
人工智能·目标检测·计算机视觉