计算机视觉技术-常用的图像增广方法图像翻转和裁剪

在对常用图像增广方法的探索时,我们将使用下面这个尺寸为400×500的图像作为示例。

python 复制代码
d2l.set_figsize()
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());

07:07:52\] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU

大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply。 此函数在输入图像img上多次运行图像增广方法aug并显示所有结果。

python 复制代码
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)

左右翻转图像通常不会改变对象的类别。这是最早且最广泛使用的图像增广方法之一。 接下来,我们使用transforms模块来创建RandomFlipLeftRight实例,这样就各有50%的几率使图像向左或向右翻转。

python 复制代码
apply(img, torchvision.transforms.RandomHorizontalFlip())

上下翻转图像不如左右图像翻转那样常用。但是,至少对于这个示例图像,上下翻转不会妨碍识别。接下来,我们创建一个RandomFlipTopBottom实例,使图像各有50%的几率向上或向下翻转。

pythyon 复制代码
apply(img, torchvision.transforms.RandomVerticalFlip())

我们可以通过对图像进行随机裁剪,使物体以不同的比例出现在图像的不同位置。 这也可以降低模型对目标位置的敏感性。

下面的代码将随机裁剪一个面积为原始面积10%到100%的区域,该区域的宽高比从0.5~2之间随机取值。 然后,区域的宽度和高度都被缩放到200像素。 在本节中(除非另有说明),a和b之间的随机数指的是在区间[a,b]中通过均匀采样获得的连续值。

python 复制代码
shape_aug = torchvision.transforms.RandomResizedCrop(
    (200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
相关推荐
wearegogog12313 小时前
基于MATLAB的多尺度血管检测与线追踪实现
开发语言·计算机视觉·matlab
AI棒棒牛15 小时前
SCI精读:基于计算机视觉改进光伏热点和积尘检测:基于现场航拍图像的YOLO模型系统比较
yolo·目标检测·计算机视觉·目标跟踪·sci
CV炼丹术16 小时前
AAAI 2026|港科大等提出ReconVLA:利用视觉重构引导,刷新机器人操作精度!(含代码)
论文阅读·计算机视觉·重构·机器人·aaai 2026
清风er16 小时前
智能座舱开发
算法·计算机视觉
却道天凉_好个秋17 小时前
OpenCV(二十四):图像滤波
人工智能·opencv·计算机视觉
leiming617 小时前
ResNetLayer 类
人工智能·神经网络·计算机视觉
AI科技星18 小时前
宇宙膨胀速度的光速极限:基于张祥前统一场论的第一性原理推导与观测验证
数据结构·人工智能·经验分享·python·算法·计算机视觉
CoovallyAIHub20 小时前
让Qwen-VL的检测能力像YOLO一样强,VLM-FO1如何打通大模型的视觉任督二脉
深度学习·算法·计算机视觉
CoovallyAIHub20 小时前
突破跨模态识别瓶颈!火箭军工程大学提出MFENet:让AI在白天黑夜都能准确识人
深度学习·算法·计算机视觉
CoovallyAIHub20 小时前
TypeScript超越Python,以66%增速跃升第一,Python稳居AI领域王座
深度学习·算法·计算机视觉