LSTM和GRU vs 普通的循环神经网络RNN

1、考虑下列三种情况下,对比一下普通RNN的表现和LSTM和GRU表现:

(1)早期观测值对预测未来观测者具有非常重要的意义。

考虑一个极端情况,其中第一个观测值包含一个校验和, 目标是在序列的末尾辨别校验和是否正确。 在这种情况下,第一个词元的影响至关重要。

RNN的表现:将不得不给这个观测值指定一个非常大的梯度, 因为它会影响所有后续的观测值。

LSTM和GRU的表现:提供某些机制能够在一个记忆元里存储重要的早期信息。

(2) 一些词元没有相关的观测值。

例如,在对网页内容进行情感分析时, 可能有一些辅助HTML代码与网页传达的情绪无关。

RNN的表现 :没有机制来跳过隐状态表示中的此类词元。

LSTM和GRU的表现 :有一些机制来跳过隐状态表示中的此类词元。

(3)序列的各个部分之间存在逻辑中断。

例如,书的章节之间可能会有过渡存在, 或者证券的熊市和牛市之间可能会有过渡存在。

RNN的表现 :在这种情况下,没有办法来重置我们的内部状态表示。

LSTM和GRU的表现 :在这种情况下,有一法来重置我们的内部状态表示。

2、LSTM和GRU能力相对占优的原理和机制

(1)GRU

支持隐状态的门控。 这意味着模型有专门的机制来确定应该何时更新隐状态, 以及应该何时重置隐状态。 这些机制是可学习的,并且能够解决了上面列出的问题。 例如,如果第一个词元非常重要, 模型将学会在第一次观测之后不更新隐状态。 同样,模型也可以学会跳过不相关的临时观测。 最后,模型还将学会在需要的时候重置隐状态。

下面具体讨论各类门控的作用。

重置门有助于捕获序列中的短期依赖关系。

更新门有助于捕获序列中的长期依赖关系。

重置门的数学表达式:

对于给定的时间步,假设输入是一个小批量(样本数,输入数),前一个时间步的隐状态是(隐藏单元数)。

那么,重置门和更新门的计算方式如下所示:

其中,是权重参数,是偏置参数。表示sigmoid函数,将输入值转换到区间(0,1)内。

将重置门与常规隐状态更新机制集成,得到时间步的候选隐状态

候选隐状态结合更新门,形成新的隐状态

每当更新门接近1时,模型就倾向只保留旧状态。 此时,来自的信息基本上被忽略, 从而有效地跳过了依赖链条中的时间步。 相反,当接近0时, 新的隐状态就会接近候选隐状态。 这些设计可以帮助我们处理循环神经网络中的梯度消失问题, 并更好地捕获时间步距离很长的序列的依赖关系。 例如,如果整个子序列的所有时间步的更新门都接近于1, 则无论序列的长度如何,在序列起始时间步的旧隐状态都将很容易保留并传递到序列结束。

相关推荐
qzhqbb18 小时前
神经网络 - 循环神经网络
人工智能·rnn·神经网络
java1234_小锋2 天前
PyTorch2 Python深度学习 - 循环神经网络(RNN)实例
python·rnn·深度学习·pytorch2
青云交2 天前
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证
java·随机森林·机器学习·lstm·压力测试·联邦学习·金融风险
青云交2 天前
Java 大视界 -- 基于 Java 的大数据实时流处理在能源行业设备状态监测与故障预测中的应用
flink·lstm·设备状态监测·故障预测·实时流处理·java 大数据·能源行业
提娜米苏3 天前
注意力机制:Jointly Learning to Align and Translate中从双向RNN编码器到软对齐的完整流程
rnn·注意力机制
IT古董4 天前
【第七章:时间序列模型】2.时间序列统计模型与神经网络模型-(3)神经网络预测时间序列模型: 从RNN,LSTM到nbeats模型
rnn·神经网络·lstm
机器学习之心4 天前
TCN-Transformer-GRU时间卷积神经网络结合编码器组合门控循环单元多特征分类预测Matlab实现
cnn·gru·transformer
rengang665 天前
14-循环神经网络(RNN):分析RNN在序列数据中的表现和特点
人工智能·rnn·深度学习
亚林瓜子5 天前
SpringBoot中使用tess4j进行OCR(在macos上面开发)
java·spring boot·macos·ocr·lstm·tess4j
文火冰糖的硅基工坊5 天前
[人工智能-大模型-125]:模型层 - RNN的隐藏层是什么网络,全连接?还是卷积?RNN如何实现状态记忆?
人工智能·rnn·lstm