【工业AI热榜】LSTM+GRU融合实战:设备故障预测准确率99.3%,附开源数据集与完整代码在智能制造迈向5万亿元规模的浪潮中,设备故障导致的年损失占比高达生产总值的5%-8%,传统维护模式难以应对"零停机"需求。本文聚焦工业实战场景,提出一种LSTM+GRU双向融合模型,通过互补长短时记忆特性与高效门控机制,解决多变量时序数据的故障特征捕捉难题。基于NASA电池老化与PHM轴承数据集的实验表明,该模型故障分类准确率达99.3%,剩余使用寿命(RUL)预测RMSE≤1.5,较单一模型性能提升12%-18%。全文配套完整Python+PyTorch代码与开源数据集,助力企业快速落地预测性维护,从被