基于秃鹰搜索优化的LSTM深度学习网络模型(BES-LSTM)的一维时间序列预测算法matlab仿真目录1.程序功能描述2.测试软件版本以及运行结果展示3.部分程序4.算法理论概述5.完整程序LSTM网络的性能高度依赖于超参数配置,其中隐含层个数是影响模型性能的关键超参数之一。传统的超参数优化方法如网格搜索、随机搜索存在效率低、易陷入局部最优等问题。秃鹰搜索优化算法(Bald Eagle Search, BES)是一种新型元启发式优化算法,模拟秃鹰在捕食过程中的搜索行为,具有收敛速度快、全局搜索能力强等优点。