MATLAB全流程对比RNN/LSTM/GRU时间序列预测性能在大数据与人工智能时代,时间序列预测已成为金融风控、能源调度、气象预报等领域的核心技术支撑。从股票价格波动到电力负荷峰值预测,从气温变化趋势到设备故障预警,精准的时间序列预测能为决策提供关键依据。而在众多预测模型中,循环神经网络(RNN)及其改进模型长短期记忆网络(LSTM)、门控循环单元(GRU)凭借对时序依赖关系的捕捉能力,成为该领域的主流选择。 但问题来了:同样是处理时间序列数据,RNN、LSTM、GRU到底该怎么选?它们的预测精度、训练效率、适用场景有何差异?不少开发者和研究者在实际项目中都会陷入