构建每个聚类的profile和deletion_mean特征

通过summarize_clusters函数构建每个聚类的protein['cluster_profile']和protein['cluster_deletion_mean']特征。目的是把extra_msa信息反映到msa中。

集成函数数据处理流程: sample_msa ->make_masked_msa -> nearest_neighbor_clusters -> summarize_clusters-> ...

主要函数 tf.math.unsorted_segment_sum:用于沿指定轴对数据进行分段求和。
tf.math.unsorted_segment_sum(data, segment_ids, num_segments, name=None)

  • data: 输入张量,包含待求和的数据。

  • segment_ids: 用于指定每个元素属于哪个段的一维整数张量。

  • num_segments: 整数,表示分段的总数。

  • name: 可选参数,用于指定操作的名称。

    import tensorflow as tf
    import pickle

    def shape_list(x):
    """Return list of dimensions of a tensor, statically where possible.

    Like `x.shape.as_list()` but with tensors instead of `None`s.
    
    Args:
      x: A tensor.
    Returns:
      A list with length equal to the rank of the tensor. The n-th element of the
      list is an integer when that dimension is statically known otherwise it is
      the n-th element of `tf.shape(x)`.
    """
    x = tf.convert_to_tensor(x)
    
    # If unknown rank, return dynamic shape
    if x.get_shape().dims is None:
      return tf.shape(x)
    
    static = x.get_shape().as_list()
    shape = tf.shape(x)
    
    ret = []
    for i in range(len(static)):
      dim = static[i]
      if dim is None:
        dim = shape[i]
      ret.append(dim)
    return ret
    

    def data_transforms_curry1(f):
    """Supply all arguments but the first."""

    def fc(*args, **kwargs):
      return lambda x: f(x, *args, **kwargs)
    
    return fc
    

    @data_transforms_curry1
    def summarize_clusters(protein):
    """Produce profile and deletion_matrix_mean within each cluster."""
    num_seq = shape_list(protein['msa'])[0]
    def csum(x):
    return tf.math.unsorted_segment_sum(
    x, protein['extra_cluster_assignment'], num_seq)

    mask = protein['extra_msa_mask']
    mask_counts = 1e-6 + protein['msa_mask'] + csum(mask)  # Include center
    
    # 结果张量[num_seq, num_resi],第一行表示和msa中的0号序列是最近邻序列的extr_msa之和,以此类推
    msa_sum = csum(mask[:, :, None] * tf.one_hot(protein['extra_msa'], 23))
    msa_sum += tf.one_hot(protein['msa'], 23)  # Original sequence
    protein['cluster_profile'] = msa_sum / mask_counts[:, :, None]
    
    del msa_sum
    
    # 每条msa序列的最近邻序列的extr_msa,在不同位置deletion数统计
    # del_sum [num_seq, num_resi],第一行表示和msa中的0号序列是最近邻序列的extr_msa,不同位置deletion数,以此类推
    del_sum = csum(mask * protein['extra_deletion_matrix'])
    del_sum += protein['deletion_matrix']  # Original sequence
    protein['cluster_deletion_mean'] = del_sum / mask_counts
    del del_sum
    
    return protein
    

    with open('Human_HBB_tensor_dict_nnclusted.pkl','rb') as f:
    protein = pickle.load(f)

    print(protein.keys())

    protein = summarize_clusters()(protein)
    print(protein.keys())
    print(protein['cluster_profile'].shape)
    print(protein['cluster_profile'])

    print(protein['cluster_deletion_mean'].shape)
    print(protein['cluster_deletion_mean'])

相关推荐
就一枚小白29 分钟前
UE--如何用 Python 调用 C++ 及蓝图函数
c++·python·ue5
m0_7482347131 分钟前
Python大数据可视化:基于spark的短视频推荐系统的设计与实现_django+spider
python·spark·django
--FGC--1 小时前
【第2篇】 Python与数据库基础
数据库·python·oracle
m0_630520641 小时前
Python初识
开发语言·python
power-辰南2 小时前
机器学习之数据分析及特征工程详细分析过程
人工智能·python·机器学习·大模型·特征
浊酒南街6 小时前
决策树python实现代码1
python·算法·决策树
FreedomLeo17 小时前
Python机器学习笔记(十三、k均值聚类)
python·机器学习·kmeans·聚类
星光樱梦7 小时前
32. 线程、进程与协程
python
阿正的梦工坊7 小时前
深入理解 PyTorch 的 view() 函数:以多头注意力机制(Multi-Head Attention)为例 (中英双语)
人工智能·pytorch·python
西猫雷婶7 小时前
python学opencv|读取图像(十九)使用cv2.rectangle()绘制矩形
开发语言·python·opencv