Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化

Python学习路线 - Python语言基础入门 - Python基础综合案例 - 数据可视化 - 地图可视化

基础地图使用

基础地图演示


代码示例:

javascript 复制代码
"""
演示地图可视化的基本使用
"""
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts


# 准备地图对象
map = Map()

# 准备数据
data = [
    ("北京市", 99),
    ("上海市", 199),
    ("湖南省", 299),
    ("台湾省", 199),
    ("安徽省", 299),
    ("广东省", 399),
    ("湖北省", 599)
]

# 添加数据
map.add("测试地图", data, "china")

# 绘图
map.render("测试地图.html")

# 设置全局选项

基础地图演示 - 视觉映射器



取色请参考http://www.ab173.com/gongju/ui/rgb.php

代码示例:

javascript 复制代码
"""
演示地图可视化的基本使用
"""
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts


# 准备地图对象
map = Map()

# 准备数据
data = [
    ("北京市", 99),
    ("上海市", 199),
    ("湖南省", 299),
    ("台湾省", 199),
    ("安徽省", 299),
    ("广东省", 399),
    ("湖北省", 599)
]

# 添加数据
map.add("测试地图", data, "china")

# 设置全局选项
map.set_global_opts(
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color":"#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color":"#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color":"#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color":"#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color":"#CC3333"},
            {"min": 10000, "label": "10000以上", "color":"#990033"}
        ]

    )
)

# 绘图
map.render("测试地图.html")

疫情地图-国内疫情地图

案例效果

数据整理

  • 获取数据

  • 数据整体结构(全国)

  • 省数据结构

  • 获取每个省份的确诊数据

  • 上述代码执行后输出,每个省的确诊数据

代码示例:

javascript 复制代码
"""
演示全国疫情可视化地图开发
"""
import json
from pyecharts.charts import Map
from pyecharts.options import *

# 读取数据文件
f = open("D:/python/可视化案例数据/地图数据/疫情.txt", "r", encoding="UTF-8")
data = f.read()  # 全部数据

# 关闭文件
f.close()

# 取到各省数据
# 将字符串json转换为python的字典
data_dict = json.loads(data)  # 基础数据字典
# 从字典中取出省份的数据
province_data_list = data_dict["areaTree"][0]["children"]

# 组装每个省份和确诊人数为元组,并将各个省的数据都封装入列表内
data_list = []  # 绘图需要使用的数据列表
for province_data in province_data_list:
    province_name = province_data["name"]  # 省份名称
    province_confirm = province_data["total"]["confirm"]  # 确诊人数
    data_list.append((province_name, province_confirm))

print(data_list)

# 创建地图对象
map = Map()

# 添加数据
map.add("各省份确诊人数", data_list, "china")
# 设置全局配置,定制分段的视觉映射
map.set_global_opts(
    title_opts=TitleOpts(title="全国疫情地图"),
    visualmap_opts=VisualMapOpts(
        is_show=True,  # 是否显示
        is_piecewise=True,  # 是否分段
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color":"#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color":"#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color":"#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color":"#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color":"#CC3333"},
            {"min": 10000, "label": "10000以上", "color":"#990033"}
        ]
    )
)

# 绘图
map.render()

疫情地图-省级疫情地图

省疫情地图

  • 效果展示

  • 获取河南省各市数据

  • 省数据结构

  • 把各市数据汇总到一个列表中

  • 参考国内疫情地图生成河南省疫情地图

代码示例:

javascript 复制代码
"""
演示河南省疫情地图开发
"""
import json
from pyecharts.charts import Map
from pyecharts.options import *

# 读取文件
f = open("D:/python/可视化案例数据/地图数据/疫情.txt", "r", encoding="UTF-8")
data = f.read()

# 关闭文件
f.close()

# 获取河南省数据
# json数据转换为python字典
data_dict = json.loads(data)

# 取到河南省数据
cities_data = data_dict["areaTree"][0]["children"][3]["children"]

# 构建地图
data_list = []
for city_data in cities_data:
    city_name = city_data["name"] + "市"
    city_confirm = city_data["total"]["confirm"]
    data_list.append((city_name, city_confirm))

print(data_list)
# 手动添加济源市的数据
data_list.append(("济源市", 6))
# 构建地图
map = Map()
map.add("河南省疫情分布", data_list, "河南")

# 设置全局选项
map.set_global_opts(
    title_opts=TitleOpts(title="全国疫情地图"),
    visualmap_opts=VisualMapOpts(
        is_show=True,  # 是否显示
        is_piecewise=True,  # 是否分段
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color":"#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color":"#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color":"#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color":"#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color":"#CC3333"},
            {"min": 10000, "label": "10000以上", "color":"#990033"}
        ]
    )
)

# 绘图
map.render()
相关推荐
肖永威23 分钟前
macOS环境安装/卸载python实践笔记
笔记·python·macos
TechWJ39 分钟前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
枷锁—sha1 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
abluckyboy1 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
喵手1 小时前
Python爬虫实战:构建各地统计局数据发布板块的自动化索引爬虫(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集数据csv导出·采集各地统计局数据发布数据·统计局数据采集
天天爱吃肉82182 小时前
跟着创意天才周杰伦学新能源汽车研发测试!3年从工程师到领域专家的成长秘籍!
数据库·python·算法·分类·汽车
m0_715575342 小时前
使用PyTorch构建你的第一个神经网络
jvm·数据库·python
甄心爱学习2 小时前
【leetcode】判断平衡二叉树
python·算法·leetcode
深蓝电商API2 小时前
滑块验证码破解思路与常见绕过方法
爬虫·python
Ulyanov2 小时前
Pymunk物理引擎深度解析:从入门到实战的2D物理模拟全攻略
python·游戏开发·pygame·物理引擎·pymunk