第R5周:天气预测

一、导入数据

1. 导入需要的库

其中,Seaborn是基于matplotlib的Python可视化库。它提供了一个高级界面来绘制有吸引力的统计图形,在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,不需要经过大量的调整就能使你的图变得精致。

Pandas 库中 DataFrame 对象的一个方法,用于计算每个数值列的基本描述统计信息。

.describe() 是Pandas 库中 DataFrame 对象的一个方法,用于计算每个数值列的基本描述统计信息,可以将数据集的各个统计量以表格形式展示出来,其中包括:

count:非缺失值的数量。

mean:平均值。

std:标准差。

min:最小值。

25%:第一四分位数。

50%:中位数(第二四分位数)。

75%:第三四分位数。

max:最大值。

默认情况下,.describe() 只会计算数值特征的描述性统计量,如果需要包括所有特征,可以使用 include='all' 参数。还可以使用 exclude 参数排除某些特征的统计量




二、探索式数据分析(EDA)

2.1数据相关性探索


2.2是否会下雨





2.3地理位置与下雨的关系


2.4湿度和压力对下雨的影响



2.5气温对下雨的影响

三、数据预处理

3.1处理缺损值




3.2构建数据集

四、预测是否下雨

4.1搭建神经网络

python 复制代码
from tensorflow.keras.optimizers import Adam
 
model=Sequential()
model.add(Dense(units=24,activation='tanh'))
model.add(Dense(units=18,activation='tanh'))
model.add(Dense(units=23,activation='tanh'))
model.add(Dropout(0.5))
model.add(Dense(units=12,activation='tanh'))
model.add(Dropout(0.2))
model.add(Dense(units=1,activation='sigmoid'))
 
optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4)
 
model.compile(loss='binary_crossentropy',
              optimizer=optimizer,
              metrics="accuracy")


4.2模型训练

4.3结果可视化


五、总结

对使用 LSTM 模型进行天气预测任务的优缺点总结,并结合 ​​Seaborn 可视化分析​​时常见的观察点进行说明:

​​一、LSTM 在天气预测中的优点​​

​​捕捉长期依赖关系​​,天气数据(如温度、湿度序列)具有强时间依赖性(如季节周期、连续数天的趋势)。LSTM 的门控机制(遗忘门、输入门、输出门)能有效学习长期模式。

​​可视化验证​​:使用 Seaborn 的 lineplot()绘制真实值 vs 预测值,可观察到模型对趋势拐点(如寒潮来临)的跟踪能力。

通过 lag_plot()分析残差自相关性,若滞后效应弱(点分布无模式),说明模型已捕捉长期依赖。

​​处理多元时间序列​​。天气预测需整合多变量(温度、气压、风速等)。LSTM 天然支持多输入特征,能建模变量间复杂相互作用。

​​二、LSTM 在天气预测中的缺点​​

​​2.1计算复杂度高​​

​​劣势​​:LSTM 参数量大,需大量数据和计算资源训练。

​​可视化验证​​:训练损失曲线(Seaborn lineplot())收敛缓慢,需更多 epoch。

资源监控显示 GPU/CUP 占用率高且耗时长。

2.2​​超参数调优敏感​​

​​劣势​​:层数、隐藏单元数、学习率等显著影响结果。

​​可视化验证​​:

使用 boxplot()对比不同超参数组合的 RMSE 分布,可观察到性能波动大。

学习率扫描图(lineplot()损失 vs 学习率)显示最优区间狭窄。

​​2.3短期突变预测困难​​

​​劣势​​:对突发天气事件(如雷暴)响应滞后,因依赖历史模式。

​​可视化验证​​:

在突变时间点放大预测曲线(lineplot()),可见明显预测延迟。

误差时间序列图(lineplot())在突变时段出现尖峰。

​​2.4长期预测误差累积​​

​​劣势​​:递归预测时误差逐步放大,尤其超过 7 天。

​​可视化验证​​:多步预测图中,随着时间步增加,预测区间(用 fill_between()绘制)显著变宽。

RMSE 随预测步长增长的曲线(lineplot())呈上升趋势。

相关推荐
qq_12498707532 分钟前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Coder_Boy_5 分钟前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
全栈老石5 分钟前
Python 异步生存手册:给被 JS async/await 宠坏的全栈工程师
后端·python
L、2186 分钟前
CANN 中的图优化技术详解:如何让 AI 模型跑得更快、更省
人工智能
大模型玩家七七8 分钟前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
新缸中之脑9 分钟前
像画家一样编程
人工智能
tq108611 分钟前
心主神明:传统智慧如何启示AI的可靠之道
人工智能
梨落秋霜13 分钟前
Python入门篇【模块/包】
python
珠海西格电力科技14 分钟前
微电网能量平衡理论的实现条件在不同场景下有哪些差异?
运维·服务器·网络·人工智能·云计算·智慧城市
新缸中之脑16 分钟前
“AI 裁员“神话
人工智能