机器学习之实验过程01

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

data_path = '/home/py/Work/labs/data/SD.csv' # 请确保您的数据文件路径是正确的

df = pd.read_csv(data_path)

df.head()

创建散点图

复制代码
# 创建散点图
plt.figure(figsize=(10, 6))
plt.scatter(df['成本'], df['价格'], color='blue', label='Data Spot')
plt.title('Cost vs Price')
plt.xlabel('Cost')
plt.ylabel('Price')
plt.legend()
plt.grid(True)
plt.show()
plt.savefig('test.jpg')

实现梯度下降算法来优化线性回归模型的参数

复制代码
def gradient_descent(X, y, learning_rate=0.01, iterations=100):
    """
    实现梯度下降算法来优化线性回归模型的参数。
    """
    m = len(y)
    X = np.hstack((np.ones((m, 1)), X))  # 添加一列 1 作为偏置项
    theta = np.zeros(X.shape[1])
    loss_history = []

    for _ in range(iterations):
        predictions = X.dot(theta)
        errors = predictions - y
        gradient = X.T.dot(errors) / m
        theta -= learning_rate * gradient
        loss = np.mean(errors ** 2) / 2
        loss_history.append(loss)

    return theta, loss_history

准备数据

X = df[['成本']]

y = df['价格']

使用梯度下降优化参数

theta, _ = gradient_descent(X, y, iterations=1000)

绘制回归拟合图

plt.figure(figsize=(10, 6))

plt.scatter(X, y, color='blue', label='Data Spot')

plt.plot(X, theta[0] + theta[1] * X, color='red', label='Fitting line')

plt.title('Cost vs Price')

plt.xlabel('Cost')

plt.ylabel('Price')

plt.legend()

plt.grid(True)

plt.show()

显示回归方程

print(f"The regression equation is: Price = {theta[0]:.2f} + {theta[1]:.2f} * Cost")

分析迭代次数对性能的影响

复制代码
# 分析迭代次数对性能的影响
iteration_counts = [50, 100, 200, 500, 1000,2000]
losses = []

for iterations in iteration_counts:
    _, loss_history = gradient_descent(X, y, iterations=iterations)
    losses.append(loss_history[-1])

# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(iteration_counts, losses, marker='o')
plt.title('Loss vs. Iteration')
plt.xlabel('Iterations')
plt.ylabel('Loss Value')
plt.grid(True)
plt.show()
相关推荐
丝瓜蛋汤16 分钟前
NCE(noise contrastive estimation)loss噪声对比估计损失和InfoNCE loss
人工智能
DeepVis Research17 分钟前
【AGI Safety/Robotics】2026年度 AGI 对抗性强化学习与软体机器人控制基准索引 (Skynet/Legion Core)
人工智能·网络安全·机器人·数据集·强化学习
Tipriest_6 小时前
torch训练出的模型的组成以及模型训练后的使用和分析办法
人工智能·深度学习·torch·utils
QuiteCoder6 小时前
深度学习的范式演进、架构前沿与通用人工智能之路
人工智能·深度学习
周名彥7 小时前
### 天脑体系V∞·13824D完全体终极架构与全域落地研究报告 (生物计算与隐私计算融合版)
人工智能·神经网络·去中心化·量子计算·agi
MoonBit月兔7 小时前
年终 Meetup:走进腾讯|AI 原生编程与 Code Agent 实战交流会
大数据·开发语言·人工智能·腾讯云·moonbit
大模型任我行7 小时前
人大:熵引导的LLM有限数据训练
人工智能·语言模型·自然语言处理·论文笔记
weixin_468466858 小时前
YOLOv13结合代码原理详细解析及模型安装与使用
人工智能·深度学习·yolo·计算机视觉·图像识别·目标识别·yolov13
蹦蹦跳跳真可爱5898 小时前
Python----大模型(GPT-2模型训练加速,训练策略)
人工智能·pytorch·python·gpt·embedding
xwill*8 小时前
π∗0.6: a VLA That Learns From Experience
人工智能·pytorch·python