机器学习之实验过程01

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

data_path = '/home/py/Work/labs/data/SD.csv' # 请确保您的数据文件路径是正确的

df = pd.read_csv(data_path)

df.head()

创建散点图

# 创建散点图
plt.figure(figsize=(10, 6))
plt.scatter(df['成本'], df['价格'], color='blue', label='Data Spot')
plt.title('Cost vs Price')
plt.xlabel('Cost')
plt.ylabel('Price')
plt.legend()
plt.grid(True)
plt.show()
plt.savefig('test.jpg')

实现梯度下降算法来优化线性回归模型的参数

def gradient_descent(X, y, learning_rate=0.01, iterations=100):
    """
    实现梯度下降算法来优化线性回归模型的参数。
    """
    m = len(y)
    X = np.hstack((np.ones((m, 1)), X))  # 添加一列 1 作为偏置项
    theta = np.zeros(X.shape[1])
    loss_history = []

    for _ in range(iterations):
        predictions = X.dot(theta)
        errors = predictions - y
        gradient = X.T.dot(errors) / m
        theta -= learning_rate * gradient
        loss = np.mean(errors ** 2) / 2
        loss_history.append(loss)

    return theta, loss_history

准备数据

X = df[['成本']]

y = df['价格']

使用梯度下降优化参数

theta, _ = gradient_descent(X, y, iterations=1000)

绘制回归拟合图

plt.figure(figsize=(10, 6))

plt.scatter(X, y, color='blue', label='Data Spot')

plt.plot(X, theta[0] + theta[1] * X, color='red', label='Fitting line')

plt.title('Cost vs Price')

plt.xlabel('Cost')

plt.ylabel('Price')

plt.legend()

plt.grid(True)

plt.show()

显示回归方程

print(f"The regression equation is: Price = {theta[0]:.2f} + {theta[1]:.2f} * Cost")

分析迭代次数对性能的影响

# 分析迭代次数对性能的影响
iteration_counts = [50, 100, 200, 500, 1000,2000]
losses = []

for iterations in iteration_counts:
    _, loss_history = gradient_descent(X, y, iterations=iterations)
    losses.append(loss_history[-1])

# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(iteration_counts, losses, marker='o')
plt.title('Loss vs. Iteration')
plt.xlabel('Iterations')
plt.ylabel('Loss Value')
plt.grid(True)
plt.show()
相关推荐
北京搜维尔科技有限公司31 分钟前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
说私域34 分钟前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售
YRr YRr34 分钟前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
知来者逆39 分钟前
研究大语言模型在心理保健智能顾问的有效性和挑战
人工智能·神经网络·机器学习·语言模型·自然语言处理
云起无垠1 小时前
技术分享 | 大语言模型赋能软件测试:开启智能软件安全新时代
人工智能·安全·语言模型
老艾的AI世界1 小时前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
翔云API1 小时前
PHP静默活体识别API接口应用场景与集成方案
人工智能
浊酒南街2 小时前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn
Tony聊跨境2 小时前
独立站SEO类型及优化:来检查这些方面你有没有落下
网络·人工智能·tcp/ip·ip
懒惰才能让科技进步2 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝