ElasticSearch 的 mapping 参数 - fields

概要

在 es 中,一个字段可能运用于不同的场景,但是某个字段类型的使用场景是有局限的

下面,我们先来看一段 es 查询语句:

复制代码
$must = [
            "bool" => [
                "should" => [
                    [
                        "range" => [
                            "user_id.raw" => [
                                "gt" => 0
                            ]
                        ]
                    ],
                    [
                        "bool" => [
                            "filter" => [
                                [
                                    "term" => [
                                        'user_id' => 0
                                    ]
                                ],
                                ...
                            ]
                        ]
                    ],
                ],
                "minimum_should_match" => 1
            ]
        ];

由上面的 es 查询语句可以看到,user_id 用于不同的过滤规则,我们看下 es 索引中关于此字段的定义:

Fields 的作用

在 es 中,一个字段可能运用于不同的场景,但是某个字段类型的使用场景是有局限的。这就是 mapping 参数 - fields 的设计用途所在。

fields:多字段特性 让一个字段拥有多个子字段类型,使得一个字段能够被多个不同的索引方式进行索引。

例一:

复制代码
PUT index_name
{
  "mappings": {         # 设置 mappings
    "properties": {     # 属性,固定写法
      "city": {         # 字段名
        "type": "text", # city 字段的类型为 text
        "fields": {     # 多字段域,固定写法
          "raw": {      # 子字段名称
            "type":  "keyword"  # 子字段类型
          }
        }
      }
    }
  }
}

说明:fields 可以让同一文本有多种不同的索引方式,比如上面所示一个 String 类型的字段 city,可以使用 text 类型做全文检索,使用 keyword 类型做聚合和排序。

例二:

复制代码
PUT index_name
{
  "mappings": {
    "properties": {
      "title": {               # 字段名称
        "type": "text",        # 字段类型
        "analyzer": "english", # 字段分词器
        "fields": {            # 多字段域,固定写法
          "std": {             # 子字段名称
            "type": "text",    # 子字段类型
            "analyzer": "standard"  # 子字段分词器
           }
        }
      }
    }
  }
}

例三:

PUT index_name
{
  "mappings": {         # 设置 mappings
    "properties": {     # 属性,固定写法
      "user_id": {         # 字段名
        "type": "keyword", # user_id 字段的类型为 keyword
        "fields": {     # 多字段域,固定写法
          "raw": {      # 子字段名称
            "type":  "integer"  # 子字段类型
          }
        }
      }
    }
  }
}

说明:fields 可以让同一文本有多种不同的索引方式,比如上面所示一个 String 类型的字段 user_id,可以使用 keyword 类型做聚合和排序,使用 integer 来做范围查询,又由于 integer 作为范围较小的数据类型, 字段的长度也相对较短,使用它可以提高索引和搜索的效率。

相关推荐
搞科研的小刘选手44 分钟前
【同济大学主办】第十一届能源资源与环境工程研究进展国际学术会议(ICAESEE 2025)
大数据·人工智能·能源·材质·材料工程·地理信息
七号练习生.c2 小时前
Git常用命令速查
大数据·git
谅望者4 小时前
数据分析笔记14:Python文件操作
大数据·数据库·笔记·python·数据挖掘·数据分析
YisquareTech4 小时前
如何实现智能补货?EDI与ERP集成打造零售库存的“自动闭环”
大数据·人工智能·零售·伊士格科技·erp集成
观远数据4 小时前
数据驱动零售新生态:观远BI打造终端经营“透视镜”
大数据·人工智能·信息可视化·数据分析·零售
i***68324 小时前
PostgreSQL 中进行数据导入和导出
大数据·数据库·postgresql
贝多财经5 小时前
千里科技报考港股上市:高度依赖吉利,AI智驾转型收入仍为零
大数据·人工智能·科技
怀璧其罪5 小时前
aleph-node Node upgrade instructions 节点升级说明
大数据·elasticsearch·搜索引擎
l***O5206 小时前
大数据实时处理:Flink流处理
大数据·flink
源码之家6 小时前
基于python租房大数据分析系统 房屋数据分析推荐 scrapy爬虫+可视化大屏 贝壳租房网 计算机毕业设计 推荐系统(源码+文档)✅
大数据·爬虫·python·scrapy·数据分析·推荐算法·租房