ElasticSearch 的 mapping 参数 - fields

概要

在 es 中,一个字段可能运用于不同的场景,但是某个字段类型的使用场景是有局限的

下面,我们先来看一段 es 查询语句:

复制代码
$must = [
            "bool" => [
                "should" => [
                    [
                        "range" => [
                            "user_id.raw" => [
                                "gt" => 0
                            ]
                        ]
                    ],
                    [
                        "bool" => [
                            "filter" => [
                                [
                                    "term" => [
                                        'user_id' => 0
                                    ]
                                ],
                                ...
                            ]
                        ]
                    ],
                ],
                "minimum_should_match" => 1
            ]
        ];

由上面的 es 查询语句可以看到,user_id 用于不同的过滤规则,我们看下 es 索引中关于此字段的定义:

Fields 的作用

在 es 中,一个字段可能运用于不同的场景,但是某个字段类型的使用场景是有局限的。这就是 mapping 参数 - fields 的设计用途所在。

fields:多字段特性 让一个字段拥有多个子字段类型,使得一个字段能够被多个不同的索引方式进行索引。

例一:

复制代码
PUT index_name
{
  "mappings": {         # 设置 mappings
    "properties": {     # 属性,固定写法
      "city": {         # 字段名
        "type": "text", # city 字段的类型为 text
        "fields": {     # 多字段域,固定写法
          "raw": {      # 子字段名称
            "type":  "keyword"  # 子字段类型
          }
        }
      }
    }
  }
}

说明:fields 可以让同一文本有多种不同的索引方式,比如上面所示一个 String 类型的字段 city,可以使用 text 类型做全文检索,使用 keyword 类型做聚合和排序。

例二:

复制代码
PUT index_name
{
  "mappings": {
    "properties": {
      "title": {               # 字段名称
        "type": "text",        # 字段类型
        "analyzer": "english", # 字段分词器
        "fields": {            # 多字段域,固定写法
          "std": {             # 子字段名称
            "type": "text",    # 子字段类型
            "analyzer": "standard"  # 子字段分词器
           }
        }
      }
    }
  }
}

例三:

PUT index_name
{
  "mappings": {         # 设置 mappings
    "properties": {     # 属性,固定写法
      "user_id": {         # 字段名
        "type": "keyword", # user_id 字段的类型为 keyword
        "fields": {     # 多字段域,固定写法
          "raw": {      # 子字段名称
            "type":  "integer"  # 子字段类型
          }
        }
      }
    }
  }
}

说明:fields 可以让同一文本有多种不同的索引方式,比如上面所示一个 String 类型的字段 user_id,可以使用 keyword 类型做聚合和排序,使用 integer 来做范围查询,又由于 integer 作为范围较小的数据类型, 字段的长度也相对较短,使用它可以提高索引和搜索的效率。

相关推荐
哈里谢顿5 小时前
浅谈django的设计模式
django
aigcapi5 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
cui17875686 小时前
排队免单模式深度拆解:闭环逻辑、裂变内核与落地法则
大数据
热爱专研AI的学妹7 小时前
数眼搜索API与博查技术特性深度对比:实时性与数据完整性的核心差异
大数据·开发语言·数据库·人工智能·python
方向研究9 小时前
管仲治国
大数据
成长之路5149 小时前
【实证分析】数据资产信息披露程度数据集-含原始数据及do代码(2007-2024年)
大数据
Elastic 中国社区官方博客9 小时前
Elasticsearch:在 X-mas 吃一些更健康的东西
android·大数据·数据库·人工智能·elasticsearch·搜索引擎·全文检索
消失的旧时光-19439 小时前
微服务的本质,其实是操作系统设计思想
java·大数据·微服务
PNP Robotics10 小时前
PNP机器人受邀参加英业达具身智能活动
大数据·人工智能·python·学习·机器人
360智汇云11 小时前
存储压缩:不是“挤水分”,而是让数据“轻装上阵
大数据·人工智能