ElasticSearch 的 mapping 参数 - fields

概要

在 es 中,一个字段可能运用于不同的场景,但是某个字段类型的使用场景是有局限的

下面,我们先来看一段 es 查询语句:

$must = [
            "bool" => [
                "should" => [
                    [
                        "range" => [
                            "user_id.raw" => [
                                "gt" => 0
                            ]
                        ]
                    ],
                    [
                        "bool" => [
                            "filter" => [
                                [
                                    "term" => [
                                        'user_id' => 0
                                    ]
                                ],
                                ...
                            ]
                        ]
                    ],
                ],
                "minimum_should_match" => 1
            ]
        ];

由上面的 es 查询语句可以看到,user_id 用于不同的过滤规则,我们看下 es 索引中关于此字段的定义:

Fields 的作用

在 es 中,一个字段可能运用于不同的场景,但是某个字段类型的使用场景是有局限的。这就是 mapping 参数 - fields 的设计用途所在。

fields:多字段特性 让一个字段拥有多个子字段类型,使得一个字段能够被多个不同的索引方式进行索引。

例一:

PUT index_name
{
  "mappings": {         # 设置 mappings
    "properties": {     # 属性,固定写法
      "city": {         # 字段名
        "type": "text", # city 字段的类型为 text
        "fields": {     # 多字段域,固定写法
          "raw": {      # 子字段名称
            "type":  "keyword"  # 子字段类型
          }
        }
      }
    }
  }
}

说明:fields 可以让同一文本有多种不同的索引方式,比如上面所示一个 String 类型的字段 city,可以使用 text 类型做全文检索,使用 keyword 类型做聚合和排序。

例二:

PUT index_name
{
  "mappings": {
    "properties": {
      "title": {               # 字段名称
        "type": "text",        # 字段类型
        "analyzer": "english", # 字段分词器
        "fields": {            # 多字段域,固定写法
          "std": {             # 子字段名称
            "type": "text",    # 子字段类型
            "analyzer": "standard"  # 子字段分词器
           }
        }
      }
    }
  }
}

例三:

PUT index_name
{
  "mappings": {         # 设置 mappings
    "properties": {     # 属性,固定写法
      "user_id": {         # 字段名
        "type": "keyword", # user_id 字段的类型为 keyword
        "fields": {     # 多字段域,固定写法
          "raw": {      # 子字段名称
            "type":  "integer"  # 子字段类型
          }
        }
      }
    }
  }
}

说明:fields 可以让同一文本有多种不同的索引方式,比如上面所示一个 String 类型的字段 user_id,可以使用 keyword 类型做聚合和排序,使用 integer 来做范围查询,又由于 integer 作为范围较小的数据类型, 字段的长度也相对较短,使用它可以提高索引和搜索的效率。

相关推荐
B站计算机毕业设计超人2 小时前
计算机毕业设计hadoop+spark股票基金推荐系统 股票基金预测系统 股票基金可视化系统 股票基金数据分析 股票基金大数据 股票基金爬虫
大数据·hadoop·python·spark·课程设计·数据可视化·推荐算法
Dusk_橙子2 小时前
在elasticsearch中,document数据的写入流程如何?
大数据·elasticsearch·搜索引擎
说私域3 小时前
社群裂变+2+1链动新纪元:S2B2C小程序如何重塑企业客户管理版图?
大数据·人工智能·小程序·开源
喝醉酒的小白5 小时前
Elasticsearch 中,分片(Shards)数量上限?副本的数量?
大数据·elasticsearch·jenkins
yuanbenshidiaos6 小时前
【大数据】机器学习----------计算机学习理论
大数据·学习·机器学习
熟透的蜗牛7 小时前
Elasticsearch 8.17.1 JAVA工具类
elasticsearch
杰克逊的日记8 小时前
HBased的原理
大数据·hbase
Edward-tan9 小时前
【玩转全栈】----Django制作部门管理页面
前端·后端·python·django·bootstrap
noravinsc10 小时前
django admin list_display显示外键字段处理办法
后端·python·django
viperrrrrrrrrr710 小时前
大数据学习(36)- Hive和YARN
大数据·hive·学习