ElasticSearch 的 mapping 参数 - fields

概要

在 es 中,一个字段可能运用于不同的场景,但是某个字段类型的使用场景是有局限的

下面,我们先来看一段 es 查询语句:

复制代码
$must = [
            "bool" => [
                "should" => [
                    [
                        "range" => [
                            "user_id.raw" => [
                                "gt" => 0
                            ]
                        ]
                    ],
                    [
                        "bool" => [
                            "filter" => [
                                [
                                    "term" => [
                                        'user_id' => 0
                                    ]
                                ],
                                ...
                            ]
                        ]
                    ],
                ],
                "minimum_should_match" => 1
            ]
        ];

由上面的 es 查询语句可以看到,user_id 用于不同的过滤规则,我们看下 es 索引中关于此字段的定义:

Fields 的作用

在 es 中,一个字段可能运用于不同的场景,但是某个字段类型的使用场景是有局限的。这就是 mapping 参数 - fields 的设计用途所在。

fields:多字段特性 让一个字段拥有多个子字段类型,使得一个字段能够被多个不同的索引方式进行索引。

例一:

复制代码
PUT index_name
{
  "mappings": {         # 设置 mappings
    "properties": {     # 属性,固定写法
      "city": {         # 字段名
        "type": "text", # city 字段的类型为 text
        "fields": {     # 多字段域,固定写法
          "raw": {      # 子字段名称
            "type":  "keyword"  # 子字段类型
          }
        }
      }
    }
  }
}

说明:fields 可以让同一文本有多种不同的索引方式,比如上面所示一个 String 类型的字段 city,可以使用 text 类型做全文检索,使用 keyword 类型做聚合和排序。

例二:

复制代码
PUT index_name
{
  "mappings": {
    "properties": {
      "title": {               # 字段名称
        "type": "text",        # 字段类型
        "analyzer": "english", # 字段分词器
        "fields": {            # 多字段域,固定写法
          "std": {             # 子字段名称
            "type": "text",    # 子字段类型
            "analyzer": "standard"  # 子字段分词器
           }
        }
      }
    }
  }
}

例三:

PUT index_name
{
  "mappings": {         # 设置 mappings
    "properties": {     # 属性,固定写法
      "user_id": {         # 字段名
        "type": "keyword", # user_id 字段的类型为 keyword
        "fields": {     # 多字段域,固定写法
          "raw": {      # 子字段名称
            "type":  "integer"  # 子字段类型
          }
        }
      }
    }
  }
}

说明:fields 可以让同一文本有多种不同的索引方式,比如上面所示一个 String 类型的字段 user_id,可以使用 keyword 类型做聚合和排序,使用 integer 来做范围查询,又由于 integer 作为范围较小的数据类型, 字段的长度也相对较短,使用它可以提高索引和搜索的效率。

相关推荐
龙山云仓26 分钟前
MES系统超融合架构
大数据·数据库·人工智能·sql·机器学习·架构·全文检索
jianghua0011 小时前
Django视图与URLs路由详解
数据库·django·sqlite
无忧智库1 小时前
某市“十五五“知识产权大数据监管平台与全链条保护系统建设方案深度解读(WORD)
大数据·人工智能
综合热讯1 小时前
股票融资融券交易时间限制一览与制度说明
大数据·人工智能·区块链
华农DrLai1 小时前
Spark SQL Catalyst 优化器详解
大数据·hive·sql·flink·spark
Pluchon1 小时前
硅基计划4.0 算法 简单模拟实现位图&布隆过滤器
java·大数据·开发语言·数据结构·算法·哈希算法
岁岁种桃花儿1 小时前
Flink从入门到上天系列第一篇:搭建第一个Flink程序
大数据·linux·flink·数据同步
历程里程碑1 小时前
普通数组-----除了自身以外数组的乘积
大数据·javascript·python·算法·elasticsearch·搜索引擎·flask
无忧智库2 小时前
某市“十五五”智慧教育2.0建设方案深度解读:从数字化转型到数智化融合的跨越之路(WORD)
大数据
eyun_185002 小时前
把健康小屋搬进单位 让职工暖心 让履职安心
大数据·人工智能·经验分享