模式识别与机器学习-SVM(核方法)

SVM(核方法)

谨以此博客作为复习期间的记录

核方法

对解线性分类问题,线性分类支持向量机是一种非常有效的方法.但是,有时分类问题是非线性的,这时可以使用非线性支持向量机,核心思想是通过核方法将低维非线性可分数据转化为高维线性可分数据。

非线性问题往往不好求解,所以希望能用解线性分类问题的方法解决这个问题. 所采取的方法是进行一个非线性变换, 将非线性问题变换为线性问题, 通过解变换后的线性问题的方法求解原来的非线性问题. 对图 7.7 所示的例子,通过变换, 将左图中椭圆变换成右图中的直线, 将非线性分类问题变换为线性分类问题.

设原空间为 X ⊂ R 2 , x = ( x ( 1 ) , x ( 2 ) ) T ∈ X \mathcal{X} \subset \mathbf{R}^2, x=\left(x^{(1)}, x^{(2)}\right)^{\mathrm{T}} \in \mathcal{X} X⊂R2,x=(x(1),x(2))T∈X, 新空间为 Z ⊂ R 2 , z = ( z ( 1 ) , z ( 2 ) ) T ∈ Z \mathcal{Z} \subset \mathbf{R}^2, z=\left(z^{(1)}, z^{(2)}\right)^{\mathrm{T}} \in \mathcal{Z} Z⊂R2,z=(z(1),z(2))T∈Z,定义从原空间到新空间的变换 (映射):
z = ϕ ( x ) = ( ( x ( 1 ) ) 2 , ( x ( 2 ) ) 2 ) T z=\phi(x)=\left(\left(x^{(1)}\right)^2,\left(x^{(2)}\right)^2\right)^{\mathrm{T}} z=ϕ(x)=((x(1))2,(x(2))2)T

经过变换 z = ϕ ( x ) z=\phi(x) z=ϕ(x), 原空间 X ⊂ R 2 \mathcal{X} \subset \mathbf{R}^2 X⊂R2 变换为新空间 Z ⊂ R 2 \mathcal{Z} \subset \mathbf{R}^2 Z⊂R2, 原空间中的点相应地变换为新空间中的点,原空间中的椭圆
w 1 ( x ( 1 ) ) 2 + w 2 ( x ( 2 ) ) 2 + b = 0 w_1\left(x^{(1)}\right)^2+w_2\left(x^{(2)}\right)^2+b=0 w1(x(1))2+w2(x(2))2+b=0

变换成为新空间中的直线
w 1 z ( 1 ) + w 2 z ( 2 ) + b = 0 w_1 z^{(1)}+w_2 z^{(2)}+b=0 w1z(1)+w2z(2)+b=0

在变换后的新空间里,直线 w 1 z ( 1 ) + w 2 z ( 2 ) + b = 0 w_1 z^{(1)}+w_2 z^{(2)}+b=0 w1z(1)+w2z(2)+b=0 可以将变换后的正负实例点正确分开. 这样, 原空间的非线性可分问题就变成了新空间的线性可分问题.

核技巧在SVM中的应用

非线性支持向量机学习算法

输入: 训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\left\{\left(x_1, y_1\right),\left(x_2, y_2\right), \cdots,\left(x_N, y_N\right)\right\} T={(x1,y1),(x2,y2),⋯,(xN,yN)}, 其中 x i ∈ X = R n , y i ∈ x_i \in \mathcal{X}=\mathbf{R}^n, y_i \in xi∈X=Rn,yi∈ Y = { − 1 , + 1 } , i = 1 , 2 , ⋯   , N \mathcal{Y}=\{-1,+1\}, \quad i=1,2, \cdots, N Y={−1,+1},i=1,2,⋯,N;

输出: 分类决策函数.

(1)选取适当的核函数 K ( x , z ) K(x, z) K(x,z) 和适当的参数 C C C, 构造并求解最优化问题
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j K ( x i , x j ) − ∑ i = 1 N α i s.t. ∑ i = 1 N α i y i = 0 0 ⩽ α i ⩽ C , i = 1 , 2 , ⋯   , N \begin{array}{ll} \min \alpha & \frac{1}{2} \sum{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j K\left(x_i, x_j\right)-\sum_{i=1}^N \alpha_i \\ \text { s.t. } & \sum_{i=1}^N \alpha_i y_i=0 \\ & 0 \leqslant \alpha_i \leqslant C, \quad i=1,2, \cdots, N \end{array} minα s.t. 21∑i=1N∑j=1NαiαjyiyjK(xi,xj)−∑i=1Nαi∑i=1Nαiyi=00⩽αi⩽C,i=1,2,⋯,N

求得最优解 α ∗ = ( α 1 ∗ , α 2 ∗ , ⋯   , α N ∗ ) T \alpha^*=\left(\alpha_1^*, \alpha_2^*, \cdots, \alpha_N^*\right)^{\mathrm{T}} α∗=(α1∗,α2∗,⋯,αN∗)T.

(2) 选择 α ∗ \alpha^* α∗ 的一个正分量 0 < α j ∗ < C 0<\alpha_j^*<C 0<αj∗<C, 计算
b ∗ = y j − ∑ i = 1 N α i ∗ y i K ( x i ⋅ x j ) b^*=y_j-\sum_{i=1}^N \alpha_i^* y_i K\left(x_i \cdot x_j\right) b∗=yj−i=1∑Nαi∗yiK(xi⋅xj)

(3)构造决策函数:
f ( x ) = sign ⁡ ( ∑ i = 1 N α i ∗ y i K ( x ⋅ x i ) + b ∗ ) f(x)=\operatorname{sign}\left(\sum_{i=1}^N \alpha_i^* y_i K\left(x \cdot x_i\right)+b^*\right) f(x)=sign(i=1∑Nαi∗yiK(x⋅xi)+b∗)

当 K ( x , z ) K(x, z) K(x,z) 是正定核函数时, 问题、 是凸二次规划问题, 解是存在的.

相关推荐
只怕自己不够好3 分钟前
OpenCV 图像运算全解析:加法、位运算(与、异或)在图像处理中的奇妙应用
图像处理·人工智能·opencv
果冻人工智能1 小时前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工1 小时前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz1 小时前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
罗小罗同学1 小时前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤1 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭1 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~1 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码2 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11332 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类