模式识别与机器学习-SVM(核方法)

SVM(核方法)

谨以此博客作为复习期间的记录

核方法

对解线性分类问题,线性分类支持向量机是一种非常有效的方法.但是,有时分类问题是非线性的,这时可以使用非线性支持向量机,核心思想是通过核方法将低维非线性可分数据转化为高维线性可分数据。

非线性问题往往不好求解,所以希望能用解线性分类问题的方法解决这个问题. 所采取的方法是进行一个非线性变换, 将非线性问题变换为线性问题, 通过解变换后的线性问题的方法求解原来的非线性问题. 对图 7.7 所示的例子,通过变换, 将左图中椭圆变换成右图中的直线, 将非线性分类问题变换为线性分类问题.

设原空间为 X ⊂ R 2 , x = ( x ( 1 ) , x ( 2 ) ) T ∈ X \mathcal{X} \subset \mathbf{R}^2, x=\left(x^{(1)}, x^{(2)}\right)^{\mathrm{T}} \in \mathcal{X} X⊂R2,x=(x(1),x(2))T∈X, 新空间为 Z ⊂ R 2 , z = ( z ( 1 ) , z ( 2 ) ) T ∈ Z \mathcal{Z} \subset \mathbf{R}^2, z=\left(z^{(1)}, z^{(2)}\right)^{\mathrm{T}} \in \mathcal{Z} Z⊂R2,z=(z(1),z(2))T∈Z,定义从原空间到新空间的变换 (映射):
z = ϕ ( x ) = ( ( x ( 1 ) ) 2 , ( x ( 2 ) ) 2 ) T z=\phi(x)=\left(\left(x^{(1)}\right)^2,\left(x^{(2)}\right)^2\right)^{\mathrm{T}} z=ϕ(x)=((x(1))2,(x(2))2)T

经过变换 z = ϕ ( x ) z=\phi(x) z=ϕ(x), 原空间 X ⊂ R 2 \mathcal{X} \subset \mathbf{R}^2 X⊂R2 变换为新空间 Z ⊂ R 2 \mathcal{Z} \subset \mathbf{R}^2 Z⊂R2, 原空间中的点相应地变换为新空间中的点,原空间中的椭圆
w 1 ( x ( 1 ) ) 2 + w 2 ( x ( 2 ) ) 2 + b = 0 w_1\left(x^{(1)}\right)^2+w_2\left(x^{(2)}\right)^2+b=0 w1(x(1))2+w2(x(2))2+b=0

变换成为新空间中的直线
w 1 z ( 1 ) + w 2 z ( 2 ) + b = 0 w_1 z^{(1)}+w_2 z^{(2)}+b=0 w1z(1)+w2z(2)+b=0

在变换后的新空间里,直线 w 1 z ( 1 ) + w 2 z ( 2 ) + b = 0 w_1 z^{(1)}+w_2 z^{(2)}+b=0 w1z(1)+w2z(2)+b=0 可以将变换后的正负实例点正确分开. 这样, 原空间的非线性可分问题就变成了新空间的线性可分问题.

核技巧在SVM中的应用

非线性支持向量机学习算法

输入: 训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\left\{\left(x_1, y_1\right),\left(x_2, y_2\right), \cdots,\left(x_N, y_N\right)\right\} T={(x1,y1),(x2,y2),⋯,(xN,yN)}, 其中 x i ∈ X = R n , y i ∈ x_i \in \mathcal{X}=\mathbf{R}^n, y_i \in xi∈X=Rn,yi∈ Y = { − 1 , + 1 } , i = 1 , 2 , ⋯   , N \mathcal{Y}=\{-1,+1\}, \quad i=1,2, \cdots, N Y={−1,+1},i=1,2,⋯,N;

输出: 分类决策函数.

(1)选取适当的核函数 K ( x , z ) K(x, z) K(x,z) 和适当的参数 C C C, 构造并求解最优化问题
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j K ( x i , x j ) − ∑ i = 1 N α i s.t. ∑ i = 1 N α i y i = 0 0 ⩽ α i ⩽ C , i = 1 , 2 , ⋯   , N \begin{array}{ll} \min \alpha & \frac{1}{2} \sum{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j K\left(x_i, x_j\right)-\sum_{i=1}^N \alpha_i \\ \text { s.t. } & \sum_{i=1}^N \alpha_i y_i=0 \\ & 0 \leqslant \alpha_i \leqslant C, \quad i=1,2, \cdots, N \end{array} minα s.t. 21∑i=1N∑j=1NαiαjyiyjK(xi,xj)−∑i=1Nαi∑i=1Nαiyi=00⩽αi⩽C,i=1,2,⋯,N

求得最优解 α ∗ = ( α 1 ∗ , α 2 ∗ , ⋯   , α N ∗ ) T \alpha^*=\left(\alpha_1^*, \alpha_2^*, \cdots, \alpha_N^*\right)^{\mathrm{T}} α∗=(α1∗,α2∗,⋯,αN∗)T.

(2) 选择 α ∗ \alpha^* α∗ 的一个正分量 0 < α j ∗ < C 0<\alpha_j^*<C 0<αj∗<C, 计算
b ∗ = y j − ∑ i = 1 N α i ∗ y i K ( x i ⋅ x j ) b^*=y_j-\sum_{i=1}^N \alpha_i^* y_i K\left(x_i \cdot x_j\right) b∗=yj−i=1∑Nαi∗yiK(xi⋅xj)

(3)构造决策函数:
f ( x ) = sign ⁡ ( ∑ i = 1 N α i ∗ y i K ( x ⋅ x i ) + b ∗ ) f(x)=\operatorname{sign}\left(\sum_{i=1}^N \alpha_i^* y_i K\left(x \cdot x_i\right)+b^*\right) f(x)=sign(i=1∑Nαi∗yiK(x⋅xi)+b∗)

当 K ( x , z ) K(x, z) K(x,z) 是正定核函数时, 问题、 是凸二次规划问题, 解是存在的.

相关推荐
MAMA668128 分钟前
强化学习(Reinforcement Learning,简称RL)
人工智能·深度学习
小不点区块2 小时前
大舍传媒:如何在海外新闻媒体发稿报道摩洛哥?
大数据·人工智能·驱动开发·阿里云
NewsMash3 小时前
UGC与AI引领的下一个10年,丝芭传媒已经准备好
人工智能·传媒
SEU-WYL4 小时前
基于深度学习的动画渲染
人工智能·深度学习·dnn
罗必答6 小时前
意得辑ABSJU202优惠15%啦,新用户注册直减哦
人工智能
羞儿7 小时前
【读点论文】基于二维伽马函数的光照不均匀图像自适应校正算法
人工智能·算法·计算机视觉
算法金「全网同名」8 小时前
算法金 | 时间序列预测真的需要深度学习模型吗?是的,我需要。不,你不需要?
深度学习·机器学习·数据分析
SEU-WYL8 小时前
基于深度学习的文本框检测
人工智能·深度学习·dnn
B站计算机毕业设计超人8 小时前
计算机毕业设计Python深度学习美食推荐系统 美食可视化 美食数据分析大屏 美食爬虫 美团爬虫 机器学习 大数据毕业设计 Django Vue.js
大数据·python·深度学习·机器学习·数据分析·课程设计·推荐算法
电商运营花8 小时前
告别盲目跟风!1688竞品数据分析实战指南(图文解析)
大数据·人工智能·经验分享·笔记·数据挖掘·数据分析