RBE306TC Computer Vision Systems Lab Manuals and Reports

RBE306TC Computer Vision Systems
Lab Manuals and Reports
Lab 1 on Nov. 10th, 2023
Objectives :
• Introducing the image processing capabilities of Matlab with Image Processing Toolbox
• Learn to read and display images
• Learn basic image processing steps
• Learn several image enhancement techniques
Before you dive into this Exercise 1 to Exercise 3, please check the following OpenCV functions in
Python Coding Platform for example:
imread, shape, imshow, imwrite, imnoise, resize, calcHist, equalizeHist, etc.
Some other Python built-in functions, or functions in Scipy package may also be used. Please refer
to online resources.
Hint : read the descriptions about each of the previous functions and any other function you might use. You may find descriptive sections of Algorithms(s) in some of the Python functions.
Task in Lab 1 (20%)
In this lab, we use the monochrome image Lenna (i.e., lenna512.bmp) to conduct the following subtasks. Let's call the original image Lenna as I 0 .
• (a) I 0 -> down-sampling to I 1 with 1/2 size of I 0 (both horizontally and vertically) using the mean value (implement it by yourself). Display it and compare to the original image. Explain your finding in the report (5%).
• (b) I 1 -> up-sampling to I 1 ' with the same size of I 0 using nearest neighbour interpolation (implement it by yourself). Display it and compare to the original image. Explain your finding in the report (5%).
• (c) Calculate the PSNR between the original image I 0 and the up-sampled images, i.e., nearest , bilinear, and bicubic , respectively , Compare the results of different interpolation methods.
Explain your finding in the report. (Note: for the bilinear and bicubic interpolation, please use the
Matlab function directly) (10%)
* For the peak value use 255, the PSNR should be calculated via:
Lab 2 on Nov. 17th, 2023
Objectives :
• Learn different image enhancement techniques
• Learn basic morphological operations
Task in Lab 2 (20%)
Feature detection and matching: edge detection, interest points and cornets, local image features, and feature matching
Morphological operation on the image of im_sawtooth (please load the image sawtooth.bmp as im_sawtooth ).
• (a). Extract the boundary of the image, and show it in the report (10%).
• (b). Conduct the operations of erosion, dilation, opening, and closing. Please use the function of strel to create the structuring element with the shape of disk (You can set your preferred radius).
Show the results after each operations and calculate the number of foreground pixel. Write your comments on comparing the results of dilation and closing (10%).

相关推荐
wechat_Neal13 小时前
AI革新汽车安全软件开发
人工智能·语言模型·自然语言处理
leafff12318 小时前
新手入坑 Stable Diffusion:模型、LoRA、硬件一篇讲透
人工智能·计算机视觉·stable diffusion
Liudef0619 小时前
DeepseekV3.2 实现构建简易版Wiki系统:从零开始的HTML实现
前端·javascript·人工智能·html
格林威21 小时前
AOI在产品质量检测制造领域的应用
人工智能·数码相机·计算机网络·计算机视觉·目标跟踪·视觉检测·制造
短视频矩阵源码定制21 小时前
矩阵系统源码推荐:技术架构与功能完备性深度解析
java·人工智能·矩阵·架构
彩云回21 小时前
多维尺度分析法(MDS)
人工智能·机器学习·1024程序员节
Rock_yzh21 小时前
AI学习日记——Transformer的架构:编码器与解码器
人工智能·深度学习·神经网络·学习·transformer
rengang6621 小时前
Spring AI Alibaba 框架使用示例总体介绍
java·人工智能·spring·spring ai·ai应用编程
FreeBuf_1 天前
新型Agent感知伪装技术利用OpenAI ChatGPT Atlas浏览器传播虚假内容
人工智能·chatgpt
yuluo_YX1 天前
语义模型 - 从 Transformer 到 Qwen
人工智能·深度学习·transformer