RBE306TC Computer Vision Systems Lab Manuals and Reports

RBE306TC Computer Vision Systems
Lab Manuals and Reports
Lab 1 on Nov. 10th, 2023
Objectives :
• Introducing the image processing capabilities of Matlab with Image Processing Toolbox
• Learn to read and display images
• Learn basic image processing steps
• Learn several image enhancement techniques
Before you dive into this Exercise 1 to Exercise 3, please check the following OpenCV functions in
Python Coding Platform for example:
imread, shape, imshow, imwrite, imnoise, resize, calcHist, equalizeHist, etc.
Some other Python built-in functions, or functions in Scipy package may also be used. Please refer
to online resources.
Hint : read the descriptions about each of the previous functions and any other function you might use. You may find descriptive sections of Algorithms(s) in some of the Python functions.
Task in Lab 1 (20%)
In this lab, we use the monochrome image Lenna (i.e., lenna512.bmp) to conduct the following subtasks. Let's call the original image Lenna as I 0 .
• (a) I 0 -> down-sampling to I 1 with 1/2 size of I 0 (both horizontally and vertically) using the mean value (implement it by yourself). Display it and compare to the original image. Explain your finding in the report (5%).
• (b) I 1 -> up-sampling to I 1 ' with the same size of I 0 using nearest neighbour interpolation (implement it by yourself). Display it and compare to the original image. Explain your finding in the report (5%).
• (c) Calculate the PSNR between the original image I 0 and the up-sampled images, i.e., nearest , bilinear, and bicubic , respectively , Compare the results of different interpolation methods.
Explain your finding in the report. (Note: for the bilinear and bicubic interpolation, please use the
Matlab function directly) (10%)
* For the peak value use 255, the PSNR should be calculated via:
Lab 2 on Nov. 17th, 2023
Objectives :
• Learn different image enhancement techniques
• Learn basic morphological operations
Task in Lab 2 (20%)
Feature detection and matching: edge detection, interest points and cornets, local image features, and feature matching
Morphological operation on the image of im_sawtooth (please load the image sawtooth.bmp as im_sawtooth ).
• (a). Extract the boundary of the image, and show it in the report (10%).
• (b). Conduct the operations of erosion, dilation, opening, and closing. Please use the function of strel to create the structuring element with the shape of disk (You can set your preferred radius).
Show the results after each operations and calculate the number of foreground pixel. Write your comments on comparing the results of dilation and closing (10%).

相关推荐
跟着珅聪学java18 分钟前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV1 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
Black_Rock_br1 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
☺����2 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
fsnine2 小时前
机器学习——数据清洗
人工智能·机器学习
小猿姐3 小时前
KubeBlocks AI:AI时代的云原生数据库运维探索
数据库·人工智能·云原生·kubeblocks
算法_小学生3 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习
吱吱企业安全通讯软件3 小时前
吱吱企业通讯软件保证内部通讯安全,搭建数字安全体系
大数据·网络·人工智能·安全·信息与通信·吱吱办公通讯
盲盒Q4 小时前
《频率之光:共振之战》
人工智能·硬件架构·量子计算
飞哥数智坊4 小时前
DeepSeek V3.1 发布:我们等的 R2 去哪了?
人工智能·deepseek