SciPy 库中maximum_filter配合generate_binary_structure获取局部极大值

SciPy 库中maximum_filter配合generate_binary_structure获取局部极大值

介绍

maximum_filter用法

maximum_filter 是 SciPy 库中的一个函数,它用于计算图像的最大值滤波。这个函数在图像处理中经常被用到,特别是在特征提取和边缘检测等任务中。

使用方法如下:

python 复制代码
import scipy.ndimage
filtered_image = scipy.ndimage.maximum_filter(input, size, footprint, output, mode, cval, origin)

参数:

  • input: 输入的 ndarray 。将应用滤波器的输入图像或数据。
  • size: 标量或元组,可选。定义滤波器窗口的大小。如果是一个标量,那么这将是每个维度的大小。如果是一个元组,那么这将指定每个维度的大小。
  • footprint: 布尔数组,可选。定义滤波器的形状,如果提供了 footprint , size 参数将被忽略。
  • output: ndarray ,可选。用于放置输出的数组。必须与输入具有相同的形状和缓冲区。
  • mode: {'reflect','constant','nearest','mirror', 'wrap'},可选。定义如何处理边界。默认值为 'reflect'。
  • cval: 标量,可选。如果 mode 是 'constant' ,这个值将用于填充。默认值为 0.0 。
  • origin: 标量或元组,可选。定义滤波器的原点。

返回值:

  • result: ndarray 。滤波后的输出。

generate_binary_structure 用法

generate_binary_structure 是 SciPy 库中的一个函数,用于生成具有给定结构元素的二进制结构。这个函数主要用于图像处理和形态学操作。

使用方法如下:

python 复制代码
import scipy.ndimage
struct = scipy.ndimage.generate_binary_structure(rank, connectivity)

参数:

  • rank: 整数,定义生成的结构元素的维数。例如,对于二维图像,排名将是2。
  • connectivity: 整数,定义像素之间的最大连接性。例如,对于二维图像,连接性为1意味着一个像素仅与其上下左右的像素连接,而连接性为2则意味着一个像素与其周围8个像素(包括对角线)都连接。

返回值:

  • output: 一个布尔数组,形状为 (2*connectivity+1,)*rank ,其中 True 表示结构元素的中心,False 表示它的背景。

例如,生成一个二维的结构元素,其连接性为1:

python 复制代码
import scipy.ndimage
struct = scipy.ndimage.generate_binary_structure(2, 1)
print(struct)

输出将是:

复制代码
[[False  True False]
 [ True  True  True]
 [False  True False]]

在这个例子中,中心像素与其上下左右的像素连接,但不与对角线像素连接。

示例代码

此代码片段摘自OpenPose项目

python 复制代码
def find_peaks(param, img):
    """
    Given a (grayscale) image, find local maxima whose value is above a given
    threshold (param['thre1'])
    :param img: Input image (2d array) where we want to find peaks
    :return: 2d np.array containing the [x,y] coordinates of each peak found
    in the image
    """

    peaks_binary = (maximum_filter(img, footprint=generate_binary_structure(
        						   2, 1)) == img) * (img > param)
    # Note reverse ([::-1]): we return [[x y], [x y]...] instead of [[y x], [y
    # x]...]
    return np.array(np.nonzero(peaks_binary)[::-1]).T
相关推荐
时见先生6 小时前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
昨夜见军贴06168 小时前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
智星云算力8 小时前
智星云镜像共享全流程指南,附避坑手册(新手必看)
人工智能
盖雅工场8 小时前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班
Loo国昌8 小时前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
发哥来了8 小时前
【AI视频创作】【评测】【核心能力与成本效益】
大数据·人工智能
醉舞经阁半卷书19 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
产品何同学10 小时前
在线问诊医疗APP如何设计?2套原型拆解与AI生成原型图实战
人工智能·产品经理·健康医疗·在线问诊·app原型·ai生成原型图·医疗app
星爷AG I10 小时前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术10 小时前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python