Bulbea助力实现股票的深度学习量化

大家好,Bulbea 是一个基于深度学习开发的,用于股票市场预测和建模的Python库。Bulbea 自带了不少可用于股票深度学习训练及测试的API,并且易于对数据进行扩展和延申,构建属于我们自己的数据及模型。

1.Bulbea基本使用方法

Bulbea 和普通的深度学习研究项目一样,在做训练和测试时,分为四步(加载数据,预处理,建模,测试)。

1.1 加载数据

Bulbea内置了数据下载模块,让你很轻易地能够下载雅虎财经的股票数据,比如下面下载雅虎财经源的GOOGL股票数据:

python 复制代码
>>> import bulbea as bb
>>> share = bb.Share('YAHOO', 'GOOGL')
>>> share.data
# Open High Low Close Volume \
# Date
# 2004-08-19 99.999999 104.059999 95.959998 100.339998 44659000.0
# 2004-08-20 101.010005 109.079998 100.500002 108.310002 22834300.0
# 2004-08-23 110.750003 113.479998 109.049999 109.399998 18256100.0
# 2004-08-24 111.239999 111.599998 103.570003 104.870002 15247300.0
# 2004-08-25 104.960000 108.000002 103.880003 106.000005 9188600.0
...

1.2 预处理

Bulbea 同样也内置了预处理模块,让你能够轻易地分割训练集和测试集:

python 复制代码
>>> from bulbea.learn.evaluation import split
>>> Xtrain, Xtest, ytrain, ytest = split(share, 'Close', normalize = True)

1.3 建模

Bulbea自带了RNN模型可供使用:

python 复制代码
>>> import numpy as np
>>> Xtrain = np.reshape(Xtrain, (Xtrain.shape[0], Xtrain.shape[1], 1))
>>> Xtest = np.reshape( Xtest, ( Xtest.shape[0], Xtest.shape[1], 1))

>>> from bulbea.learn.models import RNN
>>> rnn = RNN([1, 100, 100, 1]) # number of neurons in each layer
>>> rnn.fit(Xtrain, ytrain)
# Epoch 1/10
# 1877/1877 [==============================] - 6s - loss: 0.0039
# Epoch 2/10
# 1877/1877 [==============================] - 6s - loss: 0.0019
...

1.4 测试

通过调用sklearn的metrics就能对数据实现测试:

python 复制代码
>>> from sklearn.metrics import mean_squared_error
>>> p = rnn.predict(Xtest)
>>> mean_squared_error(ytest, p)
0.00042927869370525931
>>> import matplotlib.pyplot as pplt
>>> pplt.plot(ytest)
>>> pplt.plot(p)
>>> pplt.show()

2.情感分析

Bulbea 能自动爬取相关股票在推特上的文字,并对这些文字做一个情感分析。

只需要给Bulbea提供以下环境变量就能够进行感情色彩分析:

python 复制代码
export BULBEA_TWITTER_API_KEY="<YOUR_TWITTER_API_KEY>"
export BULBEA_TWITTER_API_SECRET="<YOUR_TWITTER_API_SECRET>"

export BULBEA_TWITTER_ACCESS_TOKEN="<YOUR_TWITTER_ACCESS_TOKEN>"
export BULBEA_TWITTER_ACCESS_TOKEN_SECRET="<YOUR_TWITTER_ACCESS_TOKEN_SECRET>"

测试一下:

python 复制代码
>>> import bulbea as bb
>>> share = bb.Share('YAHOO', 'GOOGL')
>>> bb.sentiment(share)
0.07580128205128206

由于较为粗略,这个分析仅供参考,如果喜欢今天的量化投资内容,请持续关注。

相关推荐
EkihzniY10 分钟前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通15 分钟前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
铅笔侠_小龙虾1 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
kaikaile19951 小时前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1231 小时前
第1章_LangGraph的背景与设计哲学
人工智能
Aevget2 小时前
界面组件Kendo UI for React 2025 Q3亮点 - AI功能全面提升
人工智能·react.js·ui·界面控件·kendo ui·ui开发
桜吹雪2 小时前
LangChain.js/DeepAgents可观测性
javascript·人工智能
&&Citrus2 小时前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu
乌恩大侠2 小时前
Spark 机器上修改缓冲区大小
人工智能·usrp
STLearner2 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘