对房价数据集进行处理和数据分析

大家好,我是带我去滑雪,每天教你一个小技巧!

房价数据集通常包含各种各样的特征,如房屋面积、地理位置、建造年份等。通过对数据进行处理和分析,可以更好地理解这些特征之间的关系,以及它们对房价的影响程度。这有助于确定哪些特征是最重要的,从而更有针对性地制定房地产策略。本次使用波士顿房价数据集boston_housing_data.csv,该数据集有城镇人均犯罪率(CRIM)、住宅用地所占比例(ZN)、城镇中非住宅用地所占比例(INDUS)等共计13个特征变量,响应变量为社区房价中位数(MEDV)。实现对房价数据进行可视化和统计分析:如绘制直方图、密度图、箱线图以及查看各个散点图的分布,最后使用支持向量机和KNN等几种机器学习方法进行学习。下面开始实战。

(1)导入相关模块

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from numpy import arange
from matplotlib import pyplot
from pandas import read_csv
from pandas import  set_option
from pandas.plotting import scatter_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_predict
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import ElasticNet
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.metrics import mean_squared_error
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_regression

(2)导入数据并进行可视化分析

python 复制代码
def testHouse():
    data = pd.read_csv("house_data.csv")
    set_option('display.column_space', 120)
    print(data.shape)
    print(data.isnull().any().sum())
    prices = data['MEDV']
    features = data.drop('MEDV', axis=1)
    # 直方图
    data.hist(sharex=False, sharey=False, xlabelsize=1, ylabelsize=1)
    pyplot.show()
    # 密度图
    data.plot(kind='density', subplots=True, layout=(4, 4), sharex=False, fontsize=1)
    pyplot.show()
    # 箱线图
    data.plot(kind='box', subplots=True, layout=(4, 4), sharex=False, sharey=False, fontsize=8)
    pyplot.show()
    # 查看各个特征的散点分布
    scatter_matrix(data, alpha=0.7, figsize=(10, 10), diagonal='kde')
    pyplot.show()
    # Heatmap
testHouse()

结果展示:

绘制房价数据的直方图:

绘制房价数据的密度图:

绘制 房价数据的箱线图:

查看房价数据各个特征的散点分布:

(3)使用支持向量机和KNN等机器学习方法学习

python 复制代码
def featureSelection():
    data = pd.read_csv("house_data.csv")
    x = data[['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
              'PTRATIO', 'B', 'LSTAT']]
    # print(x.head())
    y = data['MEDV']
    from sklearn.feature_selection import SelectKBest
    SelectKBest = SelectKBest(f_regression, k=3)
    bestFeature = SelectKBest.fit_transform(x, y)
    SelectKBest.get_support(indices=False)
    # print(SelectKBest.transform(x))
    print(x.columns[SelectKBest.get_support(indices=False)])
    features = data[['RM', 'PTRATIO', 'LSTAT']].copy()
    from sklearn.preprocessing import MinMaxScaler
    scaler = MinMaxScaler()
    for feature in features.columns:
        features.loc[:, '标准化' + feature] = scaler.fit_transform(features[[feature]])
    # 散点可视化,查看特征归一化后的数据
    font = {
        'family': 'SimHei'
    }
    x_train, x_test, y_train, y_test = train_test_split(features[['标准化RM', '标准化PTRATIO', '标准化LSTAT']], y,
                                                        test_size=0.3, random_state=33)

    import warnings
    warnings.filterwarnings(action="ignore", module="scipy", message="^internal gelsd") #过滤告警

    lr = LinearRegression()
    lr_predict = cross_val_predict(lr, x_train, y_train, cv=5)
    lr_score = cross_val_score(lr, x_train, y_train, cv=5)
    lr_meanscore = lr_score.mean()
    #SVR
    from sklearn.svm import SVR
    linear_svr = SVR(kernel = 'linear')
    linear_svr_predict = cross_val_predict(linear_svr, x_train, y_train, cv=5)
    linear_svr_score = cross_val_score(linear_svr, x_train, y_train, cv=5)
    linear_svr_meanscore = linear_svr_score.mean()

    poly_svr = SVR(kernel = 'poly')
    poly_svr_predict = cross_val_predict(poly_svr, x_train, y_train, cv=5)
    poly_svr_score = cross_val_score(poly_svr, x_train, y_train, cv=5)
    poly_svr_meanscore = poly_svr_score.mean()
    rbf_svr = SVR(kernel = 'rbf')
    rbf_svr_predict = cross_val_predict(rbf_svr, x_train, y_train, cv=5)
    rbf_svr_score = cross_val_score(rbf_svr, x_train, y_train, cv=5)
    rbf_svr_meanscore = rbf_svr_score.mean()
    knn = KNeighborsRegressor(2, weights='uniform')
    knn_predict = cross_val_predict(knn, x_train, y_train, cv=5)
    knn_score = cross_val_score(knn, x_train, y_train, cv=5)
    knn_meanscore = knn_score.mean()

    dtr = DecisionTreeRegressor(max_depth=4)
    dtr_predict = cross_val_predict(dtr, x_train, y_train, cv=5)
    dtr_score = cross_val_score(dtr, x_train, y_train, cv=5)
    dtr_meanscore = dtr_score.mean()

    evaluating = {
        'lr': lr_score,
        'linear_svr': linear_svr_score,
        'poly_svr': poly_svr_score,
        'rbf_svr': rbf_svr_score,
        'knn': knn_score,
        'dtr': dtr_score
    }
    evaluating = pd.DataFrame(evaluating)
    print(evaluating)

def main():
if __name__ == "__main__":
    main()

输出结果:

复制代码
Index(['RM', 'PTRATIO', 'LSTAT'], dtype='object')
         lr  linear_svr  poly_svr   rbf_svr       knn       dtr
0  0.738899    0.632970  0.866308  0.758355  0.806363  0.787402
1  0.755418    0.618558  0.865458  0.772783  0.888141  0.871562
2  0.433104    0.386320  0.569238  0.529242  0.590950  0.545247
3  0.604445    0.554785  0.723299  0.740388  0.728388  0.583349
4  0.793609    0.611882  0.805474  0.736040  0.863620  0.824755

需要数据集的家人们可以去百度网盘(永久有效)获取:

链接:https://pan.baidu.com/s/173deLlgLYUz789M3KHYw-Q?pwd=0ly6

提取码:2138


更多优质内容持续发布中,请移步主页查看。

若有问题可邮箱联系:1736732074@qq.com

博主的WeChat:TCB1736732074

点赞+关注,下次不迷路!

相关推荐
未来之窗软件服务3 小时前
商业软件开发入门到精通之路-东方仙盟
人工智能·数据挖掘·仙盟创梦ide·东方仙盟·商业软件开发入门
没有梦想的咸鱼185-1037-16638 小时前
【高分论文密码】大尺度空间模拟预测与数字制图
信息可视化·数据分析·r语言
民乐团扒谱机13 小时前
逻辑回归算法干货详解:从原理到 MATLAB 可视化实现
数学建模·matlab·分类·数据挖掘·回归·逻辑回归·代码分享
计算机毕业设计指导15 小时前
基于ResNet50的智能垃圾分类系统
人工智能·分类·数据挖掘
m0_5750463416 小时前
FPGA数据流分析
数据分析·fpga·数据流分析
思辨共悟16 小时前
Python的价值:突出在数据分析与挖掘
python·数据分析
roman_日积跬步-终至千里19 小时前
【软件架构设计(19)】软件架构评估二:软件架构分析方法分类、质量属性场景、软件评估方法发展历程
人工智能·分类·数据挖掘
用户Taobaoapi201419 小时前
京东图片搜索相似商品API开发指南
大数据·数据挖掘·数据分析
带娃的IT创业者20 小时前
《AI大模型应知应会100篇》第69篇:大模型辅助的数据分析应用开发
人工智能·数据挖掘·数据分析
数据科学作家1 天前
学数据分析必囤!数据分析必看!清华社9本书覆盖Stata/SPSS/Python全阶段学习路径
人工智能·python·机器学习·数据分析·统计·stata·spss