sklearn.feature_selection.SelectFromModel利用模型筛选特征

sklearn.feature_selection.SelectFromModel模型筛选特征

以随机森林为例,查看随机森林之类的模型使用的特征。有两种使用方式:

1, 使用未训练的模型
python 复制代码
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier
X = [[ 0.87, -1.34,  0.31 ],
     [-2.79, -0.02, -0.85 ],
     [-1.34, -0.48, -2.55 ],
     [ 1.92,  1.48,  0.65 ]]
y = [0, 1, 0, 1]

# 输入参数包括estimator, threshold:筛选阈值, prefit=False:是否训练过,max_features:最大特征数
selector = SelectFromModel(estimator=LogisticRegression(), threshold=0.5).fit(X, y)

# 筛选的特征的阈值
selector.threshold_ # 0.5

# 特征支持的布尔表
selector.get_support() # array([False,  True, False])

# 对输入进行特征筛选
X_new = selector.transform(X)

# 查看筛选出的特征名称,需要给出特征的名称列表,如果是pandas,就可以输入x.columns
selector.get_feature_names_out(['a', 'b', 'c']) # ['b']
2, 使用训练模型
python 复制代码
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier
X = [[ 0.87, -1.34,  0.31 ],
     [-2.79, -0.02, -0.85 ],
     [-1.34, -0.48, -2.55 ],
     [ 1.92,  1.48,  0.65 ]]
y = [0, 1, 0, 1]


rfc = rfc=RandomForestClassifier(n_estimators=9, max_depth=6,random_state=9)
rfc.fit(X, y)
selector = SelectFromModel(rfc, prefit=True)

# 筛选的特征的阈值
selector.threshold_ # 0.55249

# 特征支持的布尔表
selector.get_support() # array([False,  True, False])

# 对输入进行特征筛选
X_new = selector.transform(X)

# 查看筛选出的特征名称,需要给出特征的名称列表,如果是pandas,就可以输入x.columns
selector.get_feature_names_out(['a', 'b', 'c']) # ['b']
相关推荐
rellvera3 分钟前
【强化学习的数学原理】第02课-贝尔曼公式-笔记
笔记·机器学习
LZXCyrus1 小时前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
我感觉。1 小时前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
YRr YRr1 小时前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络
DieYoung_Alive1 小时前
一篇文章了解机器学习(下)
人工智能·机器学习
幻风_huanfeng2 小时前
人工智能之数学基础:线性代数在人工智能中的地位
人工智能·深度学习·神经网络·线性代数·机器学习·自然语言处理
请你喝好果汁6412 小时前
单细胞|M3-4. 细胞聚类与轨迹推断
机器学习·数据挖掘·聚类
deephub3 小时前
使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程
人工智能·pytorch·深度学习·图嵌入
羞儿3 小时前
【读点论文】Text Detection Forgot About Document OCR,很实用的一个实验对比案例,将科研成果与商业产品进行碰撞
深度学习·ocr·str·std
deephub3 小时前
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
人工智能·深度学习·transformer·大语言模型·注意力机制