sklearn.feature_selection.SelectFromModel利用模型筛选特征

sklearn.feature_selection.SelectFromModel模型筛选特征

以随机森林为例,查看随机森林之类的模型使用的特征。有两种使用方式:

1, 使用未训练的模型
python 复制代码
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier
X = [[ 0.87, -1.34,  0.31 ],
     [-2.79, -0.02, -0.85 ],
     [-1.34, -0.48, -2.55 ],
     [ 1.92,  1.48,  0.65 ]]
y = [0, 1, 0, 1]

# 输入参数包括estimator, threshold:筛选阈值, prefit=False:是否训练过,max_features:最大特征数
selector = SelectFromModel(estimator=LogisticRegression(), threshold=0.5).fit(X, y)

# 筛选的特征的阈值
selector.threshold_ # 0.5

# 特征支持的布尔表
selector.get_support() # array([False,  True, False])

# 对输入进行特征筛选
X_new = selector.transform(X)

# 查看筛选出的特征名称,需要给出特征的名称列表,如果是pandas,就可以输入x.columns
selector.get_feature_names_out(['a', 'b', 'c']) # ['b']
2, 使用训练模型
python 复制代码
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier
X = [[ 0.87, -1.34,  0.31 ],
     [-2.79, -0.02, -0.85 ],
     [-1.34, -0.48, -2.55 ],
     [ 1.92,  1.48,  0.65 ]]
y = [0, 1, 0, 1]


rfc = rfc=RandomForestClassifier(n_estimators=9, max_depth=6,random_state=9)
rfc.fit(X, y)
selector = SelectFromModel(rfc, prefit=True)

# 筛选的特征的阈值
selector.threshold_ # 0.55249

# 特征支持的布尔表
selector.get_support() # array([False,  True, False])

# 对输入进行特征筛选
X_new = selector.transform(X)

# 查看筛选出的特征名称,需要给出特征的名称列表,如果是pandas,就可以输入x.columns
selector.get_feature_names_out(['a', 'b', 'c']) # ['b']
相关推荐
Coovally AI模型快速验证1 分钟前
计算机视觉的 2026:从“堆算力”竞赛,到“省算力”智慧
人工智能·深度学习·算法·yolo·计算机视觉·无人机
软件测试君7 分钟前
2025年10款王炸AI测试工具,你用过几款?
自动化测试·软件测试·人工智能·深度学习·测试工具·单元测试·ai测试工具
Swift社区11 分钟前
AI赋能智汇高校 - 从零掌握大模型本地部署与微调全流程
人工智能·深度学习·语言模型
EW Frontier17 分钟前
【抗干扰】低SNR环境稳了!AWSPNet赋能MIMO雷达精准识别目标+抑制DRFM干扰【附python代码】
深度学习·目标识别·抗干扰·mimo雷达
sonadorje18 分钟前
矩阵的“秩”是什么?
算法·机器学习·矩阵
名为沙丁鱼的猫72919 分钟前
【万文超详A2A 协议】从个体赋能到群体智能,智能体间的“TCP/IP协议“
人工智能·python·深度学习·机器学习·自然语言处理·nlp
Lian_Ge_Blog23 分钟前
prompt 工程学习总结
人工智能·深度学习·prompt
乾元30 分钟前
黑盒之光——机器学习三要素在安全领域的投影
运维·网络·人工智能·网络协议·安全·机器学习·架构
UR的出不克31 分钟前
基于机器学习的足球比赛预测系统 - 完整开发教程
人工智能·爬虫·python·深度学习·机器学习
石去皿33 分钟前
机器学习面试·易错速问速答 30 题
人工智能·机器学习·面试