【Spark精讲】一文讲透Spark宽窄依赖的区别

宽依赖窄依赖的区别

  • 窄依赖:RDD 之间分区是一一对应的
  • 宽依赖:发生shuffle,多对多的关系
    • 宽依赖是子RDD的一个分区依赖了父RDD的多个分区
    • 父RDD的一个分区的数据,分别流入到子RDD的不同分区
    • 特例:cartesian算子对应的CartesianRDD,是通过创建了两个 NarrowDependency 完成了笛卡尔乘积操作,属于窄依赖。

窄依赖

搜索源码,RangeDependency只有UnionRDD使用到了

复制代码
val rdd1 = sc.parallelize(List(("a",1),("b",2)))
rdd1.partitions.size
//val res4: Int = 2
val rdd2 = sc.parallelize(List(("c",3),("d",4),("a",1)))
rdd2.partitions.size
//val res5: Int = 2
val rdd3 = rdd1.union(rdd2)
//val rdd3: org.apache.spark.rdd.RDD[(String, Int)] = UnionRDD[3] at union at <console>:1
rdd3.partitions.size
//val res7: Int = 4
rdd3.foreach(print)
//输出结果为:(a,1)(b,2)(c,3)(d,4)(a,1)

宽依赖

情况一

举例:cogroup算子、join算子

功能:将两个RDD中键值对的形式元素,按照相同的key,连接而成,只是将两个在类型为(K,V)和(K,W)的 RDD ,返回一个(K,(Iterable<V>,Iterable<W>))类型的 RDD

Scala 复制代码
//cogroup	
val rdd1 = sc.parallelize(List(("a",1),("b",2)))
rdd1.partitions.size
//val res4: Int = 2
val rdd2 = sc.parallelize(List(("c",3),("d",4),("a",1)))
rdd2.partitions.size
//val res5: Int = 2
val newRDD = rdd1.cogroup(rdd2)
//val newRDD: org.apache.spark.rdd.RDD[(String, (Iterable[Int], Iterable[Int]))] = MapPartitionsRDD[8] at cogroup at <console>:1
newRDD.foreach(println)
//(a,(Seq(1),Seq(1)))
//(c,(Seq(),Seq(3)))
//(d,(Seq(),Seq(4)))
//(b,(Seq(2),Seq()))

//join
val join = rdd1.join(rdd2)
//val join: org.apache.spark.rdd.RDD[(String, (Int, Int))] = MapPartitionsRDD[11] at join at <console>:1
join.foreach(println)
//(a,(1,1))

情况二

举例:groupByKey算子、reduceByKey算子

Scala 复制代码
//groupByKey
val rdd = sc.parallelize(List(("a",1),("b",2),("a",1),("b",2)))
val groupRdd = rdd1.groupByKey()
//val groupRdd: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = ShuffledRDD[16] at groupByKey at <console>:1
groupRdd.foreach(println)
//(b,Seq(2, 2))
//(a,Seq(1, 1))

//reduceByKey
val reduceRdd = rdd.reduceByKey(_+_)
//val reduceRdd: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[18] at reduceByKey at <console>:1
reduceRdd.foreach(println)
//(a,2)
//(b,4)

特例:cartesian算子

Scala 复制代码
val rdd1 = sc.parallelize(List(("a",1),("b",2)))
rdd1.partitions.size
//val res4: Int = 2
val rdd2 = sc.parallelize(List(("c",3),("d",4),("a",1)))
rdd2.partitions.size
//val res5: Int = 2
val cartesianRdd = rdd1.cartesian(rdd2)
//val cartesianRdd: org.apache.spark.rdd.RDD[((String, Int), (String, Int))] = CartesianRDD[20] at cartesian at <console>:1
cartesianRdd.partitions.size
//val res24: Int = 4
cartesianRdd.foreach(println)
//((a,1),(c,3))
//((b,2),(c,3))
//((a,1),(d,4))
//((a,1),(a,1))
//((b,2),(d,4))
//((b,2),(a,1))
相关推荐
易营宝9 小时前
多语言网站建设避坑指南:既要“数据同步”,又能“按市场个性化”,别踩这 5 个坑
大数据·人工智能
fanstuck9 小时前
从0到提交,如何用 ChatGPT 全流程参与建模比赛的
大数据·数学建模·语言模型·chatgpt·数据挖掘
春日见9 小时前
vscode代码无法跳转
大数据·人工智能·深度学习·elasticsearch·搜索引擎
萤丰信息10 小时前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区
冰糖猕猴桃13 小时前
【AI】把“大杂烩抽取”拆成多步推理:一个从单提示到多阶段管线的实践案例
大数据·人工智能·ai·提示词·多步推理
马猴烧酒.13 小时前
【面试八股|Java集合】Java集合常考面试题详解
java·开发语言·python·面试·八股
才盛智能科技14 小时前
K链通×才盛云:自助KTV品牌从0到1孵化超简单
大数据·人工智能·物联网·自助ktv系统·才盛云
广州赛远14 小时前
IRB2600-201.65特殊机器人防护服清洗工具详解与避坑指南
大数据·人工智能
川西胖墩墩14 小时前
垂直模型价值:专业领域超越通用模型的竞争
大数据·人工智能
Data_Journal15 小时前
如何使用 Python 解析 JSON 数据
大数据·开发语言·前端·数据库·人工智能·php