【Spark精讲】一文讲透Spark宽窄依赖的区别

宽依赖窄依赖的区别

  • 窄依赖:RDD 之间分区是一一对应的
  • 宽依赖:发生shuffle,多对多的关系
    • 宽依赖是子RDD的一个分区依赖了父RDD的多个分区
    • 父RDD的一个分区的数据,分别流入到子RDD的不同分区
    • 特例:cartesian算子对应的CartesianRDD,是通过创建了两个 NarrowDependency 完成了笛卡尔乘积操作,属于窄依赖。

窄依赖

搜索源码,RangeDependency只有UnionRDD使用到了

复制代码
val rdd1 = sc.parallelize(List(("a",1),("b",2)))
rdd1.partitions.size
//val res4: Int = 2
val rdd2 = sc.parallelize(List(("c",3),("d",4),("a",1)))
rdd2.partitions.size
//val res5: Int = 2
val rdd3 = rdd1.union(rdd2)
//val rdd3: org.apache.spark.rdd.RDD[(String, Int)] = UnionRDD[3] at union at <console>:1
rdd3.partitions.size
//val res7: Int = 4
rdd3.foreach(print)
//输出结果为:(a,1)(b,2)(c,3)(d,4)(a,1)

宽依赖

情况一

举例:cogroup算子、join算子

功能:将两个RDD中键值对的形式元素,按照相同的key,连接而成,只是将两个在类型为(K,V)和(K,W)的 RDD ,返回一个(K,(Iterable<V>,Iterable<W>))类型的 RDD

Scala 复制代码
//cogroup	
val rdd1 = sc.parallelize(List(("a",1),("b",2)))
rdd1.partitions.size
//val res4: Int = 2
val rdd2 = sc.parallelize(List(("c",3),("d",4),("a",1)))
rdd2.partitions.size
//val res5: Int = 2
val newRDD = rdd1.cogroup(rdd2)
//val newRDD: org.apache.spark.rdd.RDD[(String, (Iterable[Int], Iterable[Int]))] = MapPartitionsRDD[8] at cogroup at <console>:1
newRDD.foreach(println)
//(a,(Seq(1),Seq(1)))
//(c,(Seq(),Seq(3)))
//(d,(Seq(),Seq(4)))
//(b,(Seq(2),Seq()))

//join
val join = rdd1.join(rdd2)
//val join: org.apache.spark.rdd.RDD[(String, (Int, Int))] = MapPartitionsRDD[11] at join at <console>:1
join.foreach(println)
//(a,(1,1))

情况二

举例:groupByKey算子、reduceByKey算子

Scala 复制代码
//groupByKey
val rdd = sc.parallelize(List(("a",1),("b",2),("a",1),("b",2)))
val groupRdd = rdd1.groupByKey()
//val groupRdd: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = ShuffledRDD[16] at groupByKey at <console>:1
groupRdd.foreach(println)
//(b,Seq(2, 2))
//(a,Seq(1, 1))

//reduceByKey
val reduceRdd = rdd.reduceByKey(_+_)
//val reduceRdd: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[18] at reduceByKey at <console>:1
reduceRdd.foreach(println)
//(a,2)
//(b,4)

特例:cartesian算子

Scala 复制代码
val rdd1 = sc.parallelize(List(("a",1),("b",2)))
rdd1.partitions.size
//val res4: Int = 2
val rdd2 = sc.parallelize(List(("c",3),("d",4),("a",1)))
rdd2.partitions.size
//val res5: Int = 2
val cartesianRdd = rdd1.cartesian(rdd2)
//val cartesianRdd: org.apache.spark.rdd.RDD[((String, Int), (String, Int))] = CartesianRDD[20] at cartesian at <console>:1
cartesianRdd.partitions.size
//val res24: Int = 4
cartesianRdd.foreach(println)
//((a,1),(c,3))
//((b,2),(c,3))
//((a,1),(d,4))
//((a,1),(a,1))
//((b,2),(d,4))
//((b,2),(a,1))
相关推荐
永洪科技7 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
weixin_307779137 小时前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
天涯学馆9 小时前
前端开发也能用 WebAssembly?这些场景超实用!
前端·javascript·面试
上海锝秉工控10 小时前
防爆拉线位移传感器:工业安全的“隐形守护者”
大数据·人工智能·安全
cv高级工程师YKY10 小时前
SRE - - PV、UV、VV、IP详解及区别
大数据·服务器·uv
bxlj_jcj12 小时前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink
云资源服务商12 小时前
阿里云Flink:开启大数据实时处理新时代
大数据·阿里云·云计算
然我12 小时前
别再只用 base64!HTML5 的 Blob 才是二进制处理的王者,面试常考
前端·面试·html
Aurora_NeAr12 小时前
Spark SQL架构及高级用法
大数据·后端·spark
莫空000012 小时前
深入理解JavaScript的Reflect API:从原理到实践
前端·面试