kafka-python简单生产消费数据

kafka-python使用手册

kafka-python

1. 生产者同步发送数据

python 复制代码
# 生产者同步发送数据

from kafka import KafkaProducer
from kafka.errors import KafkaError

producer = KafkaProducer(bootstrap_servers=["192.168.1.6:9092"])

try:
    record_metadata = producer.send("predict_task_log", b"202312301505 predict res: success").get(timeout=10)   # 同步方式
    print(record_metadata.topic)
    print(record_metadata.partition)
    print(record_metadata.offset)
except KafkaError:
    print(f"write data to kafka failed!")
finally:
    producer.close()

2. 生产则异步发送数据

python 复制代码
# 生产者异步发送数据

from kafka import KafkaProducer
from kafka.errors import KafkaError

producer = KafkaProducer(bootstrap_servers=["192.168.1.6:9092"])

def on_send_success(record_metadata):
    """
    发送成功之后的回调函数
    """
    print(record_metadata.topic)
    print(record_metadata.partition)
    print(record_metadata.offset)

def on_send_error(excp):
    """
    发送失败后的回调函数
    """
    print(f"write data to kafka error: {excp}")

try:
    # 1. 主线程执行,子线程将数据写入缓冲池,不影响主线程做其他操作
    future = producer.send("predict_task_log", b"202312301505 predict res: success")
    # 2. 子线程通过回调函数通知主线程
    future.add_callback(on_send_success).add_errback(on_send_error)
except KafkaError:
    print(f"write data to kafka failed!")
finally:
    producer.close()

3. 消费者自动提交offset

python 复制代码
# 消费者自动提交offset

from kafka import KafkaConsumer

consumer = KafkaConsumer(
    bootstrap_servers=["192.168.1.6:9092"],
    group_id='predict_group',
    enable_auto_commit=True,        # 自动提交
    auto_commit_interval_ms=1000
)

for msg in consumer:
    topic, partition, offset = msg.topic, msg.partition, msg.offset
    key, value = msg.key, msg.value.decode("utf-8")
    print(f"从topic为{topic}的{partition}分区上,获取偏移量为{offset}的消息为{key}: {value}")

4. 消费者手动提交offset

python 复制代码
# 消费者手动提交offset

from kafka import KafkaConsumer

consumer = KafkaConsumer(
    bootstrap_servers=["192.168.1.6:9092"],
    group_id='predict_group',
    enable_auto_commit=False        # 手动提交
)

for msg in consumer:
    topic, partition, offset = msg.topic, msg.partition, msg.offset
    key, value = msg.key, msg.value.decode("utf-8")
    print(f"从topic为{topic}的{partition}分区上,获取偏移量为{offset}的消息为{key}: {value}")

    # 手动提交偏移量
    consumer.commit()           # 同步commit
    consumer.commit_async()     # 异步commit,推荐使用
相关推荐
张彦峰ZYF1 天前
高并发场景下的缓存雪崩探析与应对策略
redis·分布式·缓存
玄同7651 天前
Python 数据类型:LLM 语料与 API 参数的底层处理逻辑
开发语言·人工智能·python·自然语言处理·llm·nlp·知识图谱
databook1 天前
数据分析师的“水晶球”:时间序列分析
python·数据挖掘·数据分析
技术路上的探险家1 天前
vLLM常用启动参数的详细解释
python·大模型·qwen·vllm
WHJ2261 天前
记录解决jupyter打开闪退
ide·python·jupyter
老歌老听老掉牙1 天前
1V1砂轮轮廓的几何建模与可视化分析
python·sympy·砂轮
浔川python社1 天前
浔川社团关于福利发放方案再次调整的征求意见稿公告
python
玄同7651 天前
Python 真零基础入门:从 “什么是编程” 到 LLM Prompt 模板生成
人工智能·python·语言模型·自然语言处理·llm·nlp·prompt
hakesashou1 天前
python 随机函数可以生成字符串吗
开发语言·python
FakeOccupational1 天前
【经济学】 基本面数据(Fundamental Data)之 美国劳动力报告&非农就业NFP + ADP + 美国劳动力参与率LFPR
开发语言·人工智能·python