openCV处理音视频的常用API及一般流程

OpenCV是一个功能强大的开源计算机视觉库,提供了丰富的API和函数,用于图像处理、特征提取、目标检测等任务。下面是一些常用的OpenCV API及其在C++中的使用方法:

  1. 图像读取和显示:
cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
    // 读取图像
    cv::Mat image = cv::imread("image.jpg");

    // 显示图像
    cv::imshow("Image", image);
    cv::waitKey(0);

    return 0;
}
  1. 图像灰度化:
cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
    // 读取彩色图像
    cv::Mat colorImage = cv::imread("image.jpg");

    // 转换为灰度图像
    cv::Mat grayImage;
    cv::cvtColor(colorImage, grayImage, cv::COLOR_BGR2GRAY);

    // 显示灰度图像
    cv::imshow("Gray Image", grayImage);
    cv::waitKey(0);

    return 0;
}
  1. 图像边缘检测:
cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
    // 读取灰度图像
    cv::Mat grayImage = cv::imread("gray_image.jpg", cv::IMREAD_GRAYSCALE);

    // 边缘检测
    cv::Mat edges;
    cv::Canny(grayImage, edges, 100, 200);

    // 显示边缘图像
    cv::imshow("Edges", edges);
    cv::waitKey(0);

    return 0;
}
  1. 特征提取和匹配:
cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
    // 读取图像
    cv::Mat image1 = cv::imread("image1.jpg");
    cv::Mat image2 = cv::imread("image2.jpg");

    // 提取特征点
    cv::Ptr<cv::ORB> orb = cv::ORB::create();
    std::vector<cv::KeyPoint> keypoints1, keypoints2;
    cv::Mat descriptors1, descriptors2;
    orb->detectAndCompute(image1, cv::noArray(), keypoints1, descriptors1);
    orb->detectAndCompute(image2, cv::noArray(), keypoints2, descriptors2);

    // 特征点匹配
    cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create(cv::DescriptorMatcher::BRUTEFORCE_HAMMING);
    std::vector<cv::DMatch> matches;
    matcher->match(descriptors1, descriptors2, matches);

    // 绘制匹配结果
    cv::Mat matchImage;
    cv::drawMatches(image1, keypoints1, image2, keypoints2, matches, matchImage);

    // 显示匹配结果
    cv::imshow("Matches", matchImage);
    cv::waitKey(0);

    return 0;
}

5.移动物体检测:

cpp 复制代码
#include <opencv2/opencv.hpp>

int main()
{
    cv::VideoCapture cap(0); // 打开摄像头
    if (!cap.isOpened())
    {
        std::cout << "无法打开摄像头" << std::endl;
        return -1;
    }

    cv::Mat frame, gray, prevFrame;
    cap >> prevFrame; // 获取第一帧作为前一帧

    while (true)
    {
        cap >> frame; // 读取当前帧
        if (frame.empty())
            break;

        cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY); // 转换为灰度图像

        // 计算当前帧与前一帧的差异
        cv::Mat diff;
        cv::absdiff(gray, prevFrame, diff);

        // 对差异图像进行阈值处理
        cv::Mat thresholded;
        cv::threshold(diff, thresholded, 30, 255, cv::THRESH_BINARY);

        // 对二值图像进行腐蚀和膨胀操作,以去除噪声
        cv::Mat eroded, dilated;
        cv::erode(thresholded, eroded, cv::Mat());
        cv::dilate(eroded, dilated, cv::Mat());

        // 在原始图像上绘制移动物体的轮廓
        std::vector<std::vector<cv::Point>> contours;
        cv::findContours(dilated, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);
        cv::drawContours(frame, contours, -1, cv::Scalar(0, 0, 255), 2);

        cv::imshow("移动物体检测", frame);

        if (cv::waitKey(30) == 27) // 按下ESC键退出
            break;

        prevFrame = gray.clone(); // 更新前一帧
    }

    cap.release();
    cv::destroyAllWindows();

    return 0;
}
相关推荐
金井PRATHAMA29 分钟前
认知语义学中的象似性对人工智能自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
陈敬雷-充电了么-CEO兼CTO30 分钟前
突破多模态极限!InstructBLIP携指令微调革新视觉语言模型,X-InstructBLIP实现跨模态推理新高度
人工智能·自然语言处理·chatgpt·blip·clip·多模态大模型·gpt-5
倔强青铜三44 分钟前
最强Python Web框架到底是谁?
人工智能·python·面试
倔强青铜三1 小时前
苦练Python第45天:使用open函数读取文件内容
人工智能·python·面试
倔强青铜三1 小时前
苦练Python第43天:datetime和calendar模块的使用
人工智能·python·面试
倔强青铜三1 小时前
苦练Python第44天:math、random、statistics三剑客,带你秒杀数学计算与数据分析
人工智能·python·面试
buddy_red1 小时前
Knox工具调用功能测试
人工智能·后端·程序员
用户3521802454751 小时前
🕸️ GraphRAG 图数据质量评估:让你的知识图谱不再“翻车”!
人工智能·python·ai编程
大千AI助手1 小时前
残差:从统计学到深度学习的核心概念
人工智能·深度学习·resnet·统计学·方差分析·残差·残差分析
yzx9910131 小时前
豆包、Kimi、通义千问、DeepSeek、Gamma、墨刀 AI”六款主流大模型(或 AI 平台)生成 PPT 的完整流程
人工智能·powerpoint·墨刀