深度学习|3.6 激活函数 3.7 为什么需要非线性激活函数

激活函数

主要有sigmoid函数、tanh函数、relu函数和leaky relu函数

tanh函数相比sigmoid函数是具有优势的,因为tanh函数使得输出值的平均值为0,而sigmoid函数使得输出值的平均值为1/2,对下一层来说tanh输出的0更好进行处理。

激活函数tanh和sigmoid函数的不同和缺点

两者在趋近正负无穷时,函数值的变化量基本忽略不计。

relu函数

relu函数的缺点是,当x小于0时,函数值为一个常数,对应地,其导数为0。

相关推荐
linjoe993 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu
先做个垃圾出来………4 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
AI小书房4 小时前
【人工智能通识专栏】第十三讲:图像处理
人工智能
fanstuck4 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
多看书少吃饭6 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉
一条数据库6 小时前
南京方言数据集|300小时高质量自然对话音频|专业录音棚采集|方言语音识别模型训练|情感计算研究|方言保护文化遗产数字化|语音情感识别|方言对话系统开发
人工智能·音视频·语音识别
Yingjun Mo6 小时前
1. 统计推断-基于神经网络与Langevin扩散的自适应潜变量建模与优化
人工智能·神经网络·算法·机器学习·概率论
DogDaoDao6 小时前
Docker全解析:从核心概念到2025年AI集成新特性
人工智能·docker·eureka·程序员
深耕AI6 小时前
【PyTorch训练】准确率计算(代码片段拆解)
人工智能·pytorch·python