使用jieba库进行中文分词和去除停用词

jieba.lcut

jieba.lcut()和jieba.lcut_for_search()是jieba库中的两个分词函数,它们的功能和参数略有不同。

jieba.lcut()方法接受三个参数:需要分词的字符串,是否使用全模式(默认为False)以及是否使用HMM模型(默认为True)。它返回一个列表,其中包含分词后的词语。该方法适合用于普通的文本分词任务。

而jieba.lcut_for_search()方法接受两个参数:需要分词的字符串和是否使用HMM模型。该方法适合用于搜索引擎的分词,因为它在精确模式的基础上,对长词进行了再次切分,以提高召回率。

python 复制代码
import jieba
text = '中文分词是将中文文本切分成一系列有意义的词语的过程。'

#定义词典列表
b=['中文分词','中午文本','有意义']
jieba.load_userdict(b)  #应用自定义词典列表


print(jieba.lcut(text,cut_all=False)) # 默认精确模式,即cut_all=False
print(jieba.lcut(text,cut_all=True)) # 改为全模式,即cut_all=True
print(jieba.lcut_for_search(text)) # 搜索引擎模式
python 复制代码
import jieba

text2 = '我们中出了一个叛徒'
print(jieba.lcut(text2))

# 删除一个单词
jieba.del_word('中出')
print(jieba.lcut(text2))

#增加一个单词
jieba.add_word('出了')
print(jieba.lcut(text2))


# 如果我们不想删除"中出"这个词,但是又不想让它合在一起,可以增大它的词频
jieba.add_word('中出')  # 为了演示效果,我们需要回到最初始的样子
jieba.del_word('出了')
print(jieba.lcut(text2))
# 调节词的词频,使其能(或不能)被分词
# tune=True:执行词频调整,默认False不执行
jieba.suggest_freq(('中','出'),tune=True)
print(jieba.lcut(text2))

去除停用词语

最全中文停用词表

python 复制代码
import re
import jieba
text3 = '昨天我吃了一大碗米饭,真的是太好吃了!###@'

# 去除一些无用的字符只提取出中文出来
new_text = "".join(re.findall('[\u4e00-\u9fa5]+', text3, re.S))
print(new_text)

print(jieba.lcut(new_text))

综合案例

python 复制代码
import re
import jieba

def chinese_word_cut(mytext):
    # jieba.load_userdict('自定义词典.txt')  # 这里你可以添加jieba库识别不了的网络新词,避免将一些新词拆开
    jieba.initialize()  # 初始化jieba
    # 文本预处理 :去除一些无用的字符只提取出中文出来
    new_data = re.findall('[\u4e00-\u9fa5]+', mytext, re.S)
    new_data = " ".join(new_data)
    # 文本分词
    seg_list_exact = jieba.lcut(new_data)
    result_list = []
    # 读取停用词库
    with open('cn_stopwords.txt', encoding='utf-8') as f:  # 可根据需要打开停用词库,然后加上不想显示的词语
        con = f.readlines()
        stop_words = set()
        for i in con:
            i = i.replace("\n", "")  # 去掉读取每一行数据的\n
            stop_words.add(i)
    # 去除停用词并且去除单字
    for word in seg_list_exact:
        if word not in stop_words and len(word) > 1:
            result_list.append(word)

    return result_list

if __name__=='__main__':
    with open('new.txt','r',encoding='utf-8') as f:
        text_file=f.read()

    # 分词得到词典
    result=chinese_word_cut(text_file)
    result=set(result)
    print(result)
    # print(text_file)

参考:

文本分析-使用jieba库进行中文分词和去除停用词(附案例实战)_jieba.lcut(text)-CSDN博客

相关推荐
艾思科蓝 AiScholar8 分钟前
【SPIE出版,见刊快速,EI检索稳定,浙江水利水电学院主办】2025年物理学与量子计算国际学术会议(ICPQC 2025)
图像处理·人工智能·信息可视化·自然语言处理·数据分析·力扣·量子计算
Archie_IT12 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
alphaAIstack14 小时前
大语言模型推理能力从何而来?
人工智能·语言模型·自然语言处理
Watermelo61714 小时前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理
鸟哥大大15 小时前
【Python】pypinyin-汉字拼音转换工具
python·自然语言处理
AC使者17 小时前
介绍 TensorFlow 的基本概念和使用场景。
开发语言·自然语言处理·sqlite·github
夏莉莉iy21 小时前
[MDM 2024]Spatial-Temporal Large Language Model for Traffic Prediction
人工智能·笔记·深度学习·机器学习·语言模型·自然语言处理·transformer
伊一大数据&人工智能学习日志1 天前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
UQI-LIUWJ1 天前
论文略:ACloser Look into Mixture-of-Experts in Large Language Models
人工智能·语言模型·自然语言处理
新加坡内哥谈技术1 天前
微软发布Majorana 1芯片,开启量子计算新路径
人工智能·深度学习·语言模型·自然语言处理