pth.tar的保存和读取

一、简介

在PyTorch中,.pt、.pth和.pth.tar都是保存训练好的模型的文件格式。主要区别在于:

  1. .pt是PyTorch1.6及以上版本中引入的保存格式,可以保存整个模型,包括模型结构、模型参数以及优化器状态等信息,是一个二进制文件。
  2. .pth是PyTorch旧版本中使用的模型文件格式,只保存了模型参数,没有保存模型和其他相关信息,是一个二进制文件。
  3. .pth.tar包括.pth文件以及其他信息,比如模型结构、优化器状态、超参数信息。

二、保存

使用torch.save进行保存,保存时传入保存的状态,名称

python 复制代码
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')

三、读取

1、通过torch.load()函数加载

python 复制代码
checkpoint_path = "/home/user/msh/Project/SimCLR-master_old/runs/Jan03_19-04-59_user-X10DRi/checkpoint_0100.pth.tar"
checkpoint = torch.load(checkpoint_path)
print(checkpoint.keys())

运行结果如下:

python 复制代码
dict_keys(['epoch', 'arch', 'state_dict', 'optimizer'])

2、epoch存放的是训练的轮次,arch存放的是模型的名称,optimizer存放是优化器具体的参数,

python 复制代码
epoch = checkpoint['epoch']
print(epoch)
arch = checkpoint['arch']
print(arch)
optimizer = checkpoint['optimizer']

运行结果:

python 复制代码
100
resnet18

3、state_dict.keys()存放的是模型每一层结构的名称

python 复制代码
state_dict = checkpoint['state_dict']
print(state_dict.keys())

4、使用:先初始化模型,创建一个对象,然后使用load_state_dict()函数加载参数

python 复制代码
model = ResNetSimCLR(arch,160)
model.load_state_dict(state_dict)
相关推荐
databook12 小时前
告别盲人摸象,数据分析的抽样方法总结
后端·python·数据分析
全栈陈序员12 小时前
【Python】基础语法入门(九)—— 代码规范、调试技巧与性能初探
开发语言·python·代码规范
nvd1112 小时前
解决 Gemini API 连接卡住问题的方案
python
李剑一12 小时前
Python学习笔记2
python
晨非辰13 小时前
C++ 波澜壮阔 40 年:从基础I/O到函数重载与引用的完整构建
运维·c++·人工智能·后端·python·深度学习·c++40周年
有梦想的西瓜13 小时前
如何优化电力系统潮流分布:最优潮流(OPF)问题
python·电力·opf
DanCheng-studio18 小时前
网安毕业设计简单的方向答疑
python·毕业设计·毕设
轻抚酸~19 小时前
KNN(K近邻算法)-python实现
python·算法·近邻算法
独行soc20 小时前
2025年渗透测试面试题总结-264(题目+回答)
网络·python·安全·web安全·网络安全·渗透测试·安全狮
汤姆yu21 小时前
基于python的外卖配送及数据分析系统
开发语言·python·外卖分析