理解机器学习中的术语

文章目录

求导,梯度

  • 高等数学中一个函数 y = f ( x ) y = f(x) y=f(x)
  • 假设这个函数表示求出速度 , y ( 速度 k m / h ) = 1000 ( m ) x ( 小时 h ) y(速度km/h) = \frac{1000(m)}{x(小时 h)} y(速度km/h)=x(小时h)1000(m)
  • 那么这里的求导就是一个求出加速度 p p p
  • p = f ′ ( x ) = ( 1000 x ) ′ = − 1000 x 2 p = f^{'}(x) = (\frac{1000}{x})^{'} = -\frac{1000}{x^2} p=f′(x)=(x1000)′=−x21000
  • 这里的求导直接使用了 牛顿莱布尼茨公式
  • 而代码的办法是逼近求导

代码实现

  • 设 y = f ( x ) y = f(x) y=f(x)

  • 根据最基础的求导理解,逼近 p = lim ⁡ n − > 0 f ( x + n ) − f ( x ) n p = \lim_{n->0}\frac{f(x+n)-f(x)}{n} p=limn−>0nf(x+n)−f(x)

  • 那么求导代码如下

    def func(x):
    return 1000 / x

    求导数

    def get_p(x, batch=5, init=0.1, step=0.1):
    for i in range(batch):
    result = (func(x + init) - func(x)) / init
    init = init * step
    print(f"result == {result} batch = {i} init = {init}")
    return result

    根据极限逼近公式计算

    print(get_p(1))

    根据莱布尼茨公式计算

    print(-1000 / (1**2))

相关推荐
效率客栈老秦3 分钟前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
哈里谢顿5 分钟前
一条 Python 语句在 C 扩展里到底怎么跑
python
znhy_236 分钟前
day46打卡
python
小和尚同志8 分钟前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc
HyperAI超神经12 分钟前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
芯盾时代17 分钟前
石油化工行业网络风险解决方案
网络·人工智能·信息安全
线束线缆组件品替网17 分钟前
Weidmüller 工业以太网线缆技术与兼容策略解析
网络·人工智能·电脑·硬件工程·材料工程
lambo mercy22 分钟前
深度学习3:新冠病毒感染人数预测
人工智能·深度学习
Echo_NGC223727 分钟前
【神经视频编解码NVC】传统神经视频编解码完全指南:从零读懂 AI 视频压缩的基石
人工智能·深度学习·算法·机器学习·视频编解码
摆烂咸鱼~40 分钟前
机器学习(10)
人工智能·机器学习·支持向量机