理解机器学习中的术语

文章目录

求导,梯度

  • 高等数学中一个函数 y = f ( x ) y = f(x) y=f(x)
  • 假设这个函数表示求出速度 , y ( 速度 k m / h ) = 1000 ( m ) x ( 小时 h ) y(速度km/h) = \frac{1000(m)}{x(小时 h)} y(速度km/h)=x(小时h)1000(m)
  • 那么这里的求导就是一个求出加速度 p p p
  • p = f ′ ( x ) = ( 1000 x ) ′ = − 1000 x 2 p = f^{'}(x) = (\frac{1000}{x})^{'} = -\frac{1000}{x^2} p=f′(x)=(x1000)′=−x21000
  • 这里的求导直接使用了 牛顿莱布尼茨公式
  • 而代码的办法是逼近求导

代码实现

  • 设 y = f ( x ) y = f(x) y=f(x)

  • 根据最基础的求导理解,逼近 p = lim ⁡ n − > 0 f ( x + n ) − f ( x ) n p = \lim_{n->0}\frac{f(x+n)-f(x)}{n} p=limn−>0nf(x+n)−f(x)

  • 那么求导代码如下

    def func(x):
    return 1000 / x

    求导数

    def get_p(x, batch=5, init=0.1, step=0.1):
    for i in range(batch):
    result = (func(x + init) - func(x)) / init
    init = init * step
    print(f"result == {result} batch = {i} init = {init}")
    return result

    根据极限逼近公式计算

    print(get_p(1))

    根据莱布尼茨公式计算

    print(-1000 / (1**2))

相关推荐
槑槑紫22 分钟前
深度学习pytorch整体流程
人工智能·pytorch·深度学习
盼小辉丶35 分钟前
TensorFlow深度学习实战——去噪自编码器详解与实现
人工智能·深度学习·tensorflow
胖达不服输44 分钟前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩1 小时前
Python入门指南-番外-LLM-Fingerprint(大语言模型指纹):从技术视角看AI开源生态的边界与挑战
python·llm·mcp
吴佳浩1 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
叶 落1 小时前
计算阶梯电费
python·python 基础·python 入门
kebijuelun2 小时前
百度文心 4.5 大模型详解:ERNIE 4.5 Technical Report
人工智能·深度学习·百度·语言模型·自然语言处理·aigc
算家计算2 小时前
ComfyUI-v0.3.43本地部署教程:新增 Omnigen 2 支持,复杂图像任务一步到位!
人工智能·开源
新智元2 小时前
毕业 7 年,身价破亿!清北 AI 天团血洗硅谷,奥特曼被逼分天价股份
人工智能·openai
新智元2 小时前
刚刚,苹果大模型团队负责人叛逃 Meta!华人 AI 巨星 + 1,年薪飙至 9 位数
人工智能·openai