理解机器学习中的术语

文章目录

求导,梯度

  • 高等数学中一个函数 y = f ( x ) y = f(x) y=f(x)
  • 假设这个函数表示求出速度 , y ( 速度 k m / h ) = 1000 ( m ) x ( 小时 h ) y(速度km/h) = \frac{1000(m)}{x(小时 h)} y(速度km/h)=x(小时h)1000(m)
  • 那么这里的求导就是一个求出加速度 p p p
  • p = f ′ ( x ) = ( 1000 x ) ′ = − 1000 x 2 p = f^{'}(x) = (\frac{1000}{x})^{'} = -\frac{1000}{x^2} p=f′(x)=(x1000)′=−x21000
  • 这里的求导直接使用了 牛顿莱布尼茨公式
  • 而代码的办法是逼近求导

代码实现

  • 设 y = f ( x ) y = f(x) y=f(x)

  • 根据最基础的求导理解,逼近 p = lim ⁡ n − > 0 f ( x + n ) − f ( x ) n p = \lim_{n->0}\frac{f(x+n)-f(x)}{n} p=limn−>0nf(x+n)−f(x)

  • 那么求导代码如下

    def func(x):
    return 1000 / x

    求导数

    def get_p(x, batch=5, init=0.1, step=0.1):
    for i in range(batch):
    result = (func(x + init) - func(x)) / init
    init = init * step
    print(f"result == {result} batch = {i} init = {init}")
    return result

    根据极限逼近公式计算

    print(get_p(1))

    根据莱布尼茨公式计算

    print(-1000 / (1**2))

相关推荐
ai_xiaogui1 分钟前
Stable Diffusion Web UI 绘世版 v4.6.1 整合包:一键极速部署,深度解决 AI 绘画环境配置与 CUDA 依赖难题
人工智能·stable diffusion·环境零配置·高性能内核优化·全功能插件集成·极速部署体验
sunfove15 分钟前
Python 面向对象编程:从过程式思维到对象模型
linux·开发语言·python
Elastic 中国社区官方博客20 分钟前
使用 Elasticsearch 管理 agentic 记忆
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
升职佳兴21 分钟前
从 0 到 1:我做了一个提升 AI 对话效率的浏览器插件(架构+实现+发布)
人工智能·架构
linmoo198633 分钟前
Langchain4j 系列之二十二 - Embedding Models
人工智能·langchain·embedding·嵌入模型·langchain4j
三不原则35 分钟前
实战:基于 GitOps 实现 AI 应用的自动化部署与发布
运维·人工智能·自动化
沈浩(种子思维作者)43 分钟前
什么才叫量子物理学?什么是真正量子计算?
人工智能·python·flask·量子计算
张彦峰ZYF43 分钟前
AI 编码工具全景分析与选型决策指南——从「代码补全」到「工程级智能体」的范式跃迁
人工智能·ai 编码工具·选型决策·代码补全·工程级智能体·ai 尚不等同于工程自治
Lips6111 小时前
第四章 决策树
算法·决策树·机器学习
Coder_Boy_1 小时前
基于SpringAI的在线考试系统-DDD(领域驱动设计)核心概念及落地架构全总结(含事件驱动协同逻辑)
java·人工智能·spring boot·微服务·架构·事件驱动·领域驱动