PyTorch 入门学习数据操作之创建

简介

在深度学习中,我们通常会频繁地对数据进行操作;要操作一般就需要先创建。

官方介绍

The torch package contains data structures for multi-dimensional tensors and defines mathematical operations over these tensors. Additionally, it provides many utilities for efficient serialization of Tensors and arbitrary types, and other useful utilities

It has a CUDA counterpart, that enables you to run your tensor computations on an NVIDIA GPU with compute capability >= 3.0

我的介绍

在 PyTorch 中,torch.Tensor是进行存储和进行变换数据的主要工具

  • tensor 是什么意思?上翻译:

    一般可译作张量,张量可以看作是一个多维数组

创建

  • 这里直接上代码
python 复制代码
# 导入PyTorch
import torch



"""
    官方文档地址:https://pytorch.org/docs/2.1/torch.html#creation-ops
"""


#
def create_empty_torch(a,b):
    """
    Args:
    a:
    b:
    创建一个 [a] x [b] 的未初始化的 Tensor
    :return: Returns a tensor filled with uninitialized data.
    """

    empty = torch.empty(a,b)
    print(empty)



def create_zero_torch():
    """
    创建一个 7x5 的 long 类型全是 0 的 Tensor
    Returns:
        Returns a tensor filled with the scalar value 0, with the shape defined by the variable argument size
    """

    zero = torch.zeros(7,5,dtype=torch.long)
    print(zero)

def create_data_torch():
    """
    Constructs a tensor with no autograd history (also known as a "leaf tensor", see Autograd mechanics) by copying data
    :return:
    """
    data = torch.tensor([12.5,7])
    print(data)

def create_data_2_torch():
    data = torch.tensor([12.5, 7])
    # 返回的 tensor 默认具有相同的 torch.dtype 和 torch.device
    data = data.new_ones(2, 1, dtype=torch.float64)
    print(data)
    # 指定新的数据类型
    data = torch.randn_like(data, dtype=torch.float)
    print(data)


if __name__ == '__main__':
    create_data_2_torch()
  • 测试结果我就不贴图了,太费事,直接运行自己看

结束语

本系列教程仅针对入门初学者或者非此行业人员,敬请期待!

相关推荐
Lynnxiaowen20 分钟前
今天我们开始学习Linux自动化运维Ansible基础
linux·运维·学习·自动化·云计算·ansible
YJlio23 分钟前
VMMap 学习笔记(8.2):启动 VMMap、选择目标进程、权限要求与首次快照流程
服务器·笔记·学习
MoMoMo25100927 分钟前
WPP Media(群邑)DOOH 解决方案 重构数字户外广告价值
人工智能·重构·群邑·户外广告
却道天凉_好个秋35 分钟前
OpenCV(二十四):图像滤波
人工智能·opencv·计算机视觉
Learn Beyond Limits35 分钟前
Data Mining Tasks|数据挖掘任务
人工智能·python·神经网络·算法·机器学习·ai·数据挖掘
lisw0536 分钟前
计算生物学的学科体系!
大数据·人工智能·机器学习
蓝桉~MLGT44 分钟前
Python学习历程——模块
开发语言·python·学习
cxr8281 小时前
深度解析顶级 Doc Agent System Prompt 的架构与实践
网络·人工智能·架构·prompt·ai智能体·ai赋能·上下文工程
TGITCIC1 小时前
User Prompt 与 System Prompt:大模型沟通的“双引擎”机制深度拆解
人工智能·大模型·prompt·提示词·ai大模型·大模型ai·上下文工程
leiming61 小时前
ResNetLayer 类
人工智能·神经网络·计算机视觉