简介
在深度学习中,我们通常会频繁地对数据进行操作;要操作一般就需要先创建。
官方介绍
The torch package contains data structures for multi-dimensional tensors and defines mathematical operations over these tensors. Additionally, it provides many utilities for efficient serialization of Tensors and arbitrary types, and other useful utilities
It has a CUDA counterpart, that enables you to run your tensor computations on an NVIDIA GPU with compute capability >= 3.0
我的介绍
在 PyTorch 中,torch.Tensor是进行存储和进行变换数据的主要工具
- tensor 是什么意思?上翻译:
一般可译作张量,张量可以看作是一个多维数组
创建
- 这里直接上代码
python
# 导入PyTorch
import torch
"""
官方文档地址:https://pytorch.org/docs/2.1/torch.html#creation-ops
"""
#
def create_empty_torch(a,b):
"""
Args:
a:
b:
创建一个 [a] x [b] 的未初始化的 Tensor
:return: Returns a tensor filled with uninitialized data.
"""
empty = torch.empty(a,b)
print(empty)
def create_zero_torch():
"""
创建一个 7x5 的 long 类型全是 0 的 Tensor
Returns:
Returns a tensor filled with the scalar value 0, with the shape defined by the variable argument size
"""
zero = torch.zeros(7,5,dtype=torch.long)
print(zero)
def create_data_torch():
"""
Constructs a tensor with no autograd history (also known as a "leaf tensor", see Autograd mechanics) by copying data
:return:
"""
data = torch.tensor([12.5,7])
print(data)
def create_data_2_torch():
data = torch.tensor([12.5, 7])
# 返回的 tensor 默认具有相同的 torch.dtype 和 torch.device
data = data.new_ones(2, 1, dtype=torch.float64)
print(data)
# 指定新的数据类型
data = torch.randn_like(data, dtype=torch.float)
print(data)
if __name__ == '__main__':
create_data_2_torch()
- 测试结果我就不贴图了,太费事,直接运行自己看
结束语
本系列教程仅针对入门初学者或者非此行业人员,敬请期待!