PyTorch 入门学习数据操作之创建

简介

在深度学习中,我们通常会频繁地对数据进行操作;要操作一般就需要先创建。

官方介绍

The torch package contains data structures for multi-dimensional tensors and defines mathematical operations over these tensors. Additionally, it provides many utilities for efficient serialization of Tensors and arbitrary types, and other useful utilities

It has a CUDA counterpart, that enables you to run your tensor computations on an NVIDIA GPU with compute capability >= 3.0

我的介绍

在 PyTorch 中,torch.Tensor是进行存储和进行变换数据的主要工具

  • tensor 是什么意思?上翻译:

    一般可译作张量,张量可以看作是一个多维数组

创建

  • 这里直接上代码
python 复制代码
# 导入PyTorch
import torch



"""
    官方文档地址:https://pytorch.org/docs/2.1/torch.html#creation-ops
"""


#
def create_empty_torch(a,b):
    """
    Args:
    a:
    b:
    创建一个 [a] x [b] 的未初始化的 Tensor
    :return: Returns a tensor filled with uninitialized data.
    """

    empty = torch.empty(a,b)
    print(empty)



def create_zero_torch():
    """
    创建一个 7x5 的 long 类型全是 0 的 Tensor
    Returns:
        Returns a tensor filled with the scalar value 0, with the shape defined by the variable argument size
    """

    zero = torch.zeros(7,5,dtype=torch.long)
    print(zero)

def create_data_torch():
    """
    Constructs a tensor with no autograd history (also known as a "leaf tensor", see Autograd mechanics) by copying data
    :return:
    """
    data = torch.tensor([12.5,7])
    print(data)

def create_data_2_torch():
    data = torch.tensor([12.5, 7])
    # 返回的 tensor 默认具有相同的 torch.dtype 和 torch.device
    data = data.new_ones(2, 1, dtype=torch.float64)
    print(data)
    # 指定新的数据类型
    data = torch.randn_like(data, dtype=torch.float)
    print(data)


if __name__ == '__main__':
    create_data_2_torch()
  • 测试结果我就不贴图了,太费事,直接运行自己看

结束语

本系列教程仅针对入门初学者或者非此行业人员,敬请期待!

相关推荐
qyr67892 分钟前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
软件开发技术深度爱好者2 分钟前
浅谈人工智能(AI)对个人发展的影响
人工智能
一路向北he7 分钟前
esp32 arduino环境的搭建
人工智能
SmartBrain16 分钟前
Qwen3-VL 模型架构及原理详解
人工智能·语言模型·架构·aigc
renhongxia121 分钟前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
民乐团扒谱机29 分钟前
【AI笔记】精密光时频传递技术核心内容总结
人工智能·算法·光学频率梳
不惑_41 分钟前
通俗理解GAN的训练过程
人工智能·神经网络·生成对抗网络
越努力越幸运5081 小时前
CSS3学习之网格布局grid
前端·学习·css3
chillxiaohan1 小时前
GO学习记录——多文件调用
开发语言·学习·golang
OpenCSG1 小时前
对比分析:CSGHub vs. Hugging Face:模型管理平台选型对
人工智能·架构·开源