第14课 用openCV数豆豆

除了检测运动,openCV还能做许多有趣且实用的事情。其实openCV和FFmpeg一样都是宝藏开源项目,貌似简单的几行代码功能实现背后其实是复杂的算法在支撑。有志于深入学习的同学可以在入门后进一步研究算法的实现,一定会受益匪浅。

这节课,我们先来看一个简单的例子:数豆豆。这个小例子可以让你领略openCV的强悍。

1.复制demo4并改名为demo14。

2.修改init函数:

cpp 复制代码
//capCamHandle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)capCamThread, (LPVOID)this, 0, NULL);
capImgHandle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)capImgThread, (LPVOID)this, 0, NULL);

3.添加对应的数豆豆函数:

cpp 复制代码
DWORD WINAPI fmle::capImgThread(LPVOID lpParam) {
	fmle *pThis = (fmle*)lpParam;
	pThis->capImg();
	return 0;
}

int fmle::capImg() {
	videoCap.open(0);
	cv::Mat imgMat;
	imgMat = cv::imread("Bean.jpg");
	// 转换为HSV颜色空间
	cv::Mat hsvMat;
	cv::cvtColor(imgMat, hsvMat, cv::COLOR_BGR2HSV);	
	// 定义黄色范围的HSV阈值
	cv::Scalar lowerColor(26, 43, 46);
	cv::Scalar upperColor(34, 255, 255);
	// 对图像进行颜色过滤
	cv::Mat maskMat;
	cv::inRange(hsvMat, lowerColor, upperColor, maskMat);
	// 对二值图像进行形态学操作,去除噪点
	cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5, 5));
	cv::morphologyEx(maskMat, maskMat, cv::MORPH_OPEN, kernel);
	// 寻找轮廓
	std::vector<std::vector<cv::Point>> contours;
	cv::findContours(maskMat, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);
	// 统计豆子数量
	int beanCount = contours.size();
	cv::Mat resultMat = imgMat.clone();
	cv::drawContours(resultMat, contours, -1, cv::Scalar(0, 0, 255), 2);
	cv::putText(resultMat, "Total: " + std::to_string(beanCount), cv::Point(0, 290), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(255, 255, 255), 2);
	mainDlg->drawMatOfPub(resultMat);
	return 0;
}

4.调试运行,豆豆数量立即就显示出来了,是不是很简单?

相关推荐
码农小白猿3 分钟前
IACheck提升锅炉安装验收报告审核效率:智能化审核为安全合规保驾护航
运维·人工智能·ai·iacheck
hello我是小菜鸡3 分钟前
马尔可夫跳变系统镇定
人工智能·机器学习
阿正的梦工坊5 分钟前
Rubicon论文数据部分详解:从Rubric设计到RL Pipeline的全流程
人工智能·深度学习·机器学习·语言模型·自然语言处理
njsgcs19 分钟前
cuas 电脑操作ai 相关
人工智能
独自归家的兔31 分钟前
基于 cosyvoice-v3-plus 的 个人音色复刻 (华为OBS)
人工智能·华为·语音识别
Legend NO2432 分钟前
如何构建自己高质量语料库?
人工智能·非结构化数据
Hcoco_me36 分钟前
大模型面试题23:对比学习原理-从通俗理解到核心逻辑(通用AI视角)
人工智能·rnn·深度学习·学习·自然语言处理·word2vec
Java后端的Ai之路37 分钟前
【神经网络基础】-神经网络优化方法全解析
人工智能·深度学习·神经网络·机器学习
高洁0138 分钟前
深度学习—卷积神经网络(2)
人工智能·深度学习·机器学习·transformer·知识图谱
一招定胜负40 分钟前
项目案例:卷积神经网络实现食物图片分类代码详细解析
人工智能·分类·cnn