In the second -- global part of the training, we align the newly trained band with already encoded knowledge.
The simplest method to circumvent interference between bands is to partition the latent space of VAE and place new data representation in a separate area of latent space.
However, such an approach limits information sharing across separate tasks and hinders forward and backward knowledge transfer(这种方法限制了不同任务之间的信息共享,并阻碍了向前和向后的知识转移 ). Therefore, in Multiband VAE we propose to align different latent spaces through an additional neural network that we call translator . Translator maps individual latent spaces which are conditioned with task id into the common global one where examples are stored independently of their source task, as presented in Fig 2.
在使用变分自编码器(VAE)时,对潜在空间进行划分(partition)并将新数据表示放置在独立区域的方法,可以通过以下步骤实现:
-
潜在空间划分(Partitioning the Latent Space):
- 首先,对VAE的潜在空间进行划分。潜在空间是由编码器部分生成的,并且通常是一个连续分布的空间。
- 划分潜在空间可以通过多种方式实现,比如通过限制某些维度的取值范围,或者在训练时对特定的潜在变量进行约束,使得它们更多地专注于特定类型的信息。
-
将新数据表示放置在独立区域的潜在空间(Placing New Data Representation in a Separate Area of Latent Space):
- 当有新的数据需要添加到已训练的模型中时,这些新数据的表示需要被放置在独立的区域,以防止对已有知识的干扰。
- 这可以通过对编码器部分进行调整或者对训练数据应用一些约束来实现。例如,在训练新数据时,可以限制该数据对潜在空间中某些特定维度的影响,使得它们更倾向于在独立的区域产生表示。
- 另一种方法是使用特定的掩码或者条件来指导编码器,以确保新数据的编码在潜在空间中与已有的表示相互分离。
这些方法旨在确保新数据的表示不会与已有知识相互干扰,从而实现对潜在空间的分区,使得每个区域或子空间能够专门处理特定类型的信息或数据。这样,整个模型可以逐渐学习和积累不同数据类型的知识,而不至于产生干扰或混淆。具体的方法可能会因研究的具体问题而有所不同,但总体目标是将不同类型的数据表示保持在潜在空间的独立区域中。
代码示例:
下面的实现方式可能是错误的
1、定义VAE
python
import torch
import torch.nn as nn
import torch.nn.functional as F
class VAE(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super(VAE, self).__init__()
# Encoder
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc21 = nn.Linear(hidden_dim, latent_dim) # mean
self.fc22 = nn.Linear(hidden_dim, latent_dim) # log variance
# Decoder
self.fc3 = nn.Linear(latent_dim, hidden_dim)
self.fc4 = nn.Linear(hidden_dim, input_dim)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
2. 修改编码器以支持潜在空间的划分
这个部分取决于你如何想划分潜在空间。一个简单的策略是为不同的数据类别分配不同的潜在空间区域。这可以通过在编码器中加入条件信息来实现:
python
class ConditionalVAE(VAE):
def __init__(self, input_dim, hidden_dim, latent_dim, num_classes):
super(ConditionalVAE, self).__init__(input_dim, hidden_dim, latent_dim)
self.class_emb = nn.Embedding(num_classes, hidden_dim)
def encode(self, x, y):
h1 = F.relu(self.fc1(x) + self.class_emb(y))
return self.fc21(h1), self.fc22(h1)
3. 训练VAE
训练过程需要考虑如何适应新的数据:
python
def train(model, data_loader, optimizer, epoch, device):
model.train()
train_loss = 0
for batch_idx, (data, labels) in enumerate(data_loader):
data = data.to(device)
labels = labels.to(device)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data, labels)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
print('Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss / len(data_loader.dataset)))