COMP9517 Computer Vision

COMP9517: Computer Vision
2023 T3 Lab 1 Specification
Maximum Marks Achievable: 2.5
This lab is worth 2.5% of the total course mark .
Objectives: This lab revisits important concepts covered in the Week 1 and Week 2 lectures and aims to make you familiar with implementing specific algorithms.
Preliminaries: As mentioned in the first lecture, we assume you are familiar with programming in Python or are willing to learn it independently. You do not need to be an expert, as you will further develop your skills during the course, but you should at least know the basics. If you do not yet know Python, we assume you are familiar with at least one other programming language such as C, in which case it should be relatively easy to learn Python.
To learn or brush up your Python skills, see several free online resources listed at the end of this document. Especially if you already know C or similar languages, there is no need to go through all the linked resources in detail. Just quickly learn the syntax and the main features of the language. The rest will follow as you go.
For implementing and testing computer vision algorithms, we use OpenCV in this course.
OpenCV is a library of programming functions mainly for computer vision. The library is crossplatform and licensed as free and open-source software under Apache License 2. It also supports training and execution of machine/deep learning models. Originally written in C, with new algorithms developed in C++, it has wrappers for languages such as Python and Java. As stated above, in this course we will focus on programming in Python. See the links below for OpenCV tutorials and documentation.
Software: You are required to use OpenCV 3+ with Python 3+ and submit your code as a Jupyter notebook (see coding and submission requirements below). In the first tutor consultation session this week, your tutors will give a demo of the software to be used, and you can ask any questions you may have about this.
Materials: The sample images to be used in this lab are available via WebCMS3.
Submission: All code and requested results are assessable after the lab. Submit your source code as a Jupyter notebook (.ipynb) which includes all output and answers to all questions (see coding requirements at the end of this document) by the above deadline. The submission link will be announced in due time.
1. Contrast Stretching
Contrast is a measure of the range of intensity values in an image and is defined as the difference between the maximum pixel value and minimum pixel value. The maximum possible contrast of an 8-bit image is 255 (max) -- 0 (min) = 255. Any value less than that means the image has lower contrast than possible. Contrast stretching attempts to improve the contrast of the image by stretching the range of intensity values using linear scaling.

相关推荐
悟空CRM服务17 小时前
开源的力量:如何用开源技术构建高效IT架构?
java·人工智能·架构·开源·开源软件
机器人行业研究员17 小时前
机器人“小脑”萎缩,何谈“大脑”智慧?六维力/关节力传感器才是“救命稻草”
人工智能·机器人·人机交互·六维力传感器·关节力传感器
互联网科技看点17 小时前
多场景服务机器人代理品牌深度解析
人工智能·机器人
500佰17 小时前
Copilot、Codeium 软件开发领域的代表性工具背后的技术
人工智能·github·gpt-3·copilot·个人开发·xcode
Francek Chen17 小时前
【自然语言处理】预训练06:子词嵌入
人工智能·pytorch·深度学习·自然语言处理·子词嵌入
微盛企微增长小知识17 小时前
企业微信AI怎么用?从智能表格落地看如何提升运营效率
大数据·人工智能·企业微信
私域实战笔记17 小时前
如何选择企业微信SCRM?2025年3个选型参考维度
大数据·人工智能·企业微信·scrm·企业微信scrm
袁庭新18 小时前
2025年10月总结
人工智能·aigc·coze
yolo_guo18 小时前
opencv 学习: QA_01 什么是图像锐化
linux·c++·opencv·计算机视觉
AI浩18 小时前
SMamba: 基于稀疏Mamba的事件相机目标检测
人工智能·数码相机·目标检测