前言
本文实现将一个图片中的线段和圆圈检测出来,效果就像这样
开始之前请先自行安装 opencv
另外还用到了一个用来检测直线: olena.pages.lre.epita.fr/pylena/inde...
pip install pylena
直线检测
先用 opencv
来检测直线, 因为下面代码是运行在 google 实验室的,所以显示图片使用 google.colab.patches
提供的方法
ini
import cv2
import numpy as np
from google.colab.patches import cv2_imshow
import sys
import math
import matplotlib.pyplot as plt
# 读取原始图像
image = cv2.imread("/content/2.jpg")
# 将图像转换为灰度
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
kernel = np.ones((1))
img_dilated = cv2.dilate(gray, kernel, iterations=1)
# 使用Canny边缘检测算法
edges = cv2.Canny(img_dilated, 100, 200)
# 使用Hough线变换算法检测线
lines = cv2.HoughLinesP(edges,1,np.pi/180, threshold=25, minLineLength=20, maxLineGap=20)
# 绘制检测到的线
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
# 显示结果
print(f"共: {len(lines)} 条线段")
cv2_imshow(image)
效果是这样的,虽然也都差不太多了,但是还得手动处理一些数据才行,因为重复的和没用的线段有些多,都需要删除掉才行。
那就换一个库,使用 pylena
ini
import matplotlib.pyplot as plt
from skimage.data import text
from skimage import io, color
import pylena as pln
import numpy as np
from skimage import img_as_ubyte # 用于将图像转换为 uint8 类型
from typing import List
import random
import cv2
def random_red_color():
# 随机生成红色通道值
red_channel = 255
green_channel = random.randint(0, 255)
blue_channel = random.randint(0, 255)
# 返回RGB颜色
return (red_channel, green_channel, blue_channel)
# 转换为 uint8 类型
img2 = img_as_ubyte(color.rgb2gray(img.copy()))
plt.xticks([])
plt.yticks([])
img_label: np.ndarray
superpositions: List[pln.scribo.LSuperposition]
lines: List[pln.scribo.VSegment]
img_label,superpositions, lines = pln.scribo.line_detector(
img2,
"full", verbose=False,
min_len=50,
blumi=160,
llumi=160,
discontinuity_relative=0,
minimum_for_fusion=0
)
print(f"共检测出:{len(lines)}条线段")
if lines is not None:
for line in lines:
cv2.line(img, (line.x0, line.y0), (line.x1, line.y1), random_red_color(), 2)
else:
print("未检测出直线")
plt.xticks([])
plt.yticks([])
plt.imshow(img)
plt.show()
效果如下,但是每一次检测都是不一样的结果,差距倒是不大。
完善下代码,将圆圈也检测一些,圆圈检测使用 opencv
ini
import matplotlib.pyplot as plt
from skimage.data import text
from skimage import io, color
import pylena as pln
import numpy as np
from skimage import img_as_ubyte # 用于将图像转换为 uint8 类型
from typing import List
import random
import cv2
def random_red_color():
# 随机生成红色通道值
red_channel = 255
green_channel = random.randint(0, 255)
blue_channel = random.randint(0, 255)
# 返回RGB颜色
return (red_channel, green_channel, blue_channel)
# ==== 圆形检测 ====
img = io.imread("/content/1.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
circles = cv2.HoughCircles(
gray,
cv2.HOUGH_GRADIENT,
dp=1,
minDist=50,
param1=100,
param2=25,
minRadius=5,
maxRadius=100
)
print(f"共检测出:{len(circles[0])}个圆")
if circles is not None:
circles = np.uint16(np.around(circles))
for circle in circles[0, :]:
center = (circle[0], circle[1])
# radius = circle[2]
radius = 30 # 别超过下面直线的最大检测长度
cv2.circle(img, center, radius, random_red_color(), 2)
else:
print("未检测出圆圈")
# plt.imshow(img)
# plt.show()
# ==== 直线检测 ====
# 转换为 uint8 类型
img2 = img_as_ubyte(color.rgb2gray(img.copy()))
plt.xticks([])
plt.yticks([])
img_label: np.ndarray
superpositions: List[pln.scribo.LSuperposition]
lines: List[pln.scribo.VSegment]
img_label,superpositions, lines = pln.scribo.line_detector(
img2,
"full", verbose=False,
min_len=50,
blumi=160,
llumi=160,
discontinuity_relative=0,
minimum_for_fusion=0
)
print(f"共检测出:{len(lines)}条线段")
if lines is not None:
for line in lines:
cv2.line(img, (line.x0, line.y0), (line.x1, line.y1), random_red_color(), 2)
else:
print("未检测出直线")
plt.imshow(img)
plt.show()