tensorflow环境安装配置

  1. 下载匹配cuda的kaldi镜像

Ubuntu 20.04 including Python 3.8

NVIDIA CUDA 11.6.0

cuBLAS 11.8.1.74

NVIDIA cuDNN 8.3.2.44

NVIDIA NCCL 2.11.4 (optimized for NVLink™)

rdma-core 36.0

NVIDIA HPC-X 2.10

OpenMPI 4.1.2rc4+

OpenUCX 1.12.0

GDRCopy 2.3

Nsight Systems 2021.5.2.53

TensorRT 8.2.2

SHARP 2.5

DALI 1.9

docker run --gpus '"device=all"' -itd -v /home/work/wang:/home/work/wang

-v /opt/wfs1/aivoice:/opt/wfs1/aivoice

--net host

--name wyr_tf_cuda11.6

--shm-size=8g

nvcr.io/nvidia/kaldi:22.01-py3 bash

  1. 配置pip 和 conda

    vim ~/.pip/pip.conf

    添加如下内容

global

index-url = https://pypi.tuna.tsinghua.edu.cn/simple

install

trusted-host=mirrors.aliyun.com

  1. 配置conda镜像

vim ~/.condarc

复制代码
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  1. 安装tensorflow-gpu==1.14.0

第一次尝试:

pip install tensorflow-gpu==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

找不到版本。原因是自己的python是3.8。

tensorflow1.14需要python3.7版本,而python3.8版本对应的是tensorflow2版本。

于是首先创建python3.7环境。

conda create -n audio python=3.7

conda activate audio

第二次尝试:

pip install tensorflow-gpu==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

安装成功。但是import出错。

错误1:

TypeError: Descriptors cannot not be created directly.

If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.

If you cannot immediately regenerate your protos, some other possible workarounds are:

  1. Downgrade the protobuf package to 3.20.x or lower.
  2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).

解决方法:

pip install protobuf==3.19.0

错误2:

/home/work/wangyaru05/anaconda3/envs/audio/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.

_np_qint8 = np.dtype([("qint8", np.int8, 1)])

/home/work/wangyaru05/anaconda3/envs/audio/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.

_np_quint8 = np.dtype([("quint8", np.uint8, 1)])

/home/work/wangyaru05/anaconda3/envs/audio/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.

_np_qint16 = np.dtype([("qint16", np.int16, 1)])

/home/work/wangyaru05/anaconda3/envs/audio/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.

_np_quint16 = np.dtype([("quint16", np.uint16, 1)])

解决方法:

pip install numpy==1.16.4

  1. 其它包的安装
    中间运行项目的时候,发现少一些包,比如resampy,pandas,使用pip单独安装会安装最新版本,然后卸载numpy1.16.4,安装更新版本的,这样会导致tensorflow又会报错,所以需要找到合适的resampy和pandas版本。从网上没找到说明,就手动一直实验,不好弄。后来发现可以用下面的方法解决:

pip install numpy==1.16.4 resampy numba scipy pandas h5py

这样写一块就能限制resampy、numba、scipy的版本,让他们自动兼容

相关推荐
小熊哥^--^2 分钟前
HTTP一些问题的解答(接上篇)
网络·网络协议·http
Bruce_Liuxiaowei3 分钟前
Windows系统中msg命令的完整使用方法及相关示例
运维·网络·windows·网络安全
周杰伦_Jay15 分钟前
【计算机网络】TCP/IP模型核心层解析(网络/传输/应用层)
网络·tcp/ip·计算机网络
white-persist15 分钟前
网络空间安全核心领域技术架构深度解析
c语言·开发语言·网络·python·安全·网络安全·架构
专家大圣19 分钟前
摆脱局域网!Logseq 搭配cpolar公网访问让笔记管理更自由
linux·网络·docker·内网穿透·cpolar
极地星光1 小时前
Asio应用(高级):构建高性能、安全、跨平台的网络系统
网络
不染尘.1 小时前
NAT技术和链路层概述
网络·计算机网络
小嘟嘟26791 小时前
虚拟机网络问题故障定位
linux·服务器·网络
板鸭〈小号〉1 小时前
HTTP中的cookie
网络·网络协议·http
zfj3211 小时前
深入理解 Linux Namespace:隔离技术的基石
linux·运维·网络