算法(TS):计数质数

给定整数 n ,返回 所有小于非负整数 n 的质数的数量 。

示例 1:

输入:n = 10

输出:4

解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。

示例 2:

输入:n = 0

输出:0

示例 3:

输入:n = 1

输出:0

提示:

  • 0 <= n <= 5 * 106

解法一:枚举求解

考虑质数的定义:在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。因此对于任何整数n,我们都能从小到大枚举[2,n-1]中的 x,判断 x 是否能被 n 整除,如果能,则n是质数。这里的时间复杂度为O(n)。继续考虑,如果 x 能被 n 整除,那么 n/x 也能被 n 整除,因此只需要校验 x 或者 n/x 就能判断 n 是不是质数。Math.min(n/x,x)一定落在[2,Math.sqrt(x)] 的区间中,因此对于整数 n,只需要判断[2,Math.sqrt(x)]是否有因子即可。这样单次检测的事件复杂度从O(n)减低到O(Math.sqrt(n))。

返回所有小于非负整数 n 的质数的数量,只需要判断从 2 到 n-1 的数是否是质数。

typescript 复制代码
function isPrime(n:number) {
    for(let i = 2; i * i <= n; i++) {
        if(n%i===0) {
            return false
        }
    }

    return true
}

function countPrimes(n: number): number {
    let count = 0

    for(let i = 2; i < n; i++) {
        if(isPrime(i)){
            count++
        }
    }

    return count
}

解法二:埃氏筛

如果 x 是质数,那么 x 的 j 倍,例如 2x,3x... 一定不是质数,利用可以从这里入手优化时间复杂度。

ini 复制代码
function countPrimes(n: number): number {
    const isPrimeArr = new Array(n).fill(1)
    let count = 0

    for(let i = 2; i < n; i++) {
        if(isPrimeArr[i]) {
            count++
            for(let j = 2;i * j < n;j++) {
                isPrimeArr[i * j] = 0
            }
        }
    }

    return count
}

时间复杂度:O(nlog⁡log⁡n),空间复杂度:O(n)。

相关推荐
-dzk-3 小时前
【代码随想录】LC 59.螺旋矩阵 II
c++·线性代数·算法·矩阵·模拟
风筝在晴天搁浅3 小时前
hot100 78.子集
java·算法
Jasmine_llq4 小时前
《P4587 [FJOI2016] 神秘数》
算法·倍增思想·稀疏表(st 表)·前缀和数组(解决静态区间和查询·st表核心实现高效预处理和查询·预处理优化(提前计算所需信息·快速io提升大规模数据读写效率
超级大只老咪4 小时前
快速进制转换
笔记·算法
m0_706653234 小时前
C++编译期数组操作
开发语言·c++·算法
故事和你914 小时前
sdut-Java面向对象-06 继承和多态、抽象类和接口(函数题:10-18题)
java·开发语言·算法·面向对象·基础语法·继承和多态·抽象类和接口
qq_423233904 小时前
C++与Python混合编程实战
开发语言·c++·算法
TracyCoder1235 小时前
LeetCode Hot100(19/100)——206. 反转链表
算法·leetcode
m0_715575345 小时前
分布式任务调度系统
开发语言·c++·算法