(超详细)YOLOV5改进-添加SimAM注意力机制

1、在yolov5/models下面新建一个SimAM.py文件,在里面放入下面的代码

代码如下:

bash 复制代码
import torch
import torch.nn as nn


class SimAM(torch.nn.Module):
    def __init__(self, e_lambda=1e-4):
        super(SimAM, self).__init__()

        self.activaton = nn.Sigmoid()
        self.e_lambda = e_lambda

    def __repr__(self):
        s = self.__class__.__name__ + '('
        s += ('lambda=%f)' % self.e_lambda)
        return s

    @staticmethod
    def get_module_name():
        return "simam"

    def forward(self, x):
        b, c, h, w = x.size()

        n = w * h - 1

        x_minus_mu_square = (x - x.mean(dim=[2, 3], keepdim=True)).pow(2)
        y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2, 3], keepdim=True) / n + self.e_lambda)) + 0.5

        return x * self.activaton(y)

2、找到yolo.py文件,进行更改内容

在26行加一个from models SimAM import SimAM, 保存即可

3、找到自己想要更改的yaml文件,我选择的yolov5s.yaml文件(你可以根据自己需求进行选择),将刚刚写好的模块SimAM加入到yolov5s.yaml里面,并更改一些内容。更改如下

运行一下,发现出来了SimAM

结果还没出来呢,还在跑,

跑100个epoch,还不知道跑到啥时候哈哈哈哈!结果后放!

2024/01/10

结果出来了

降了0.00几,继续尝试换别的注意力机制了

相关推荐
Danceful_YJ14 分钟前
4.权重衰减(weight decay)
python·深度学习·机器学习
二DUAN帝30 分钟前
UE实现路径回放、自动驾驶功能简记
人工智能·websocket·机器学习·ue5·自动驾驶·ue4·cesiumforue
运器1235 小时前
【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
大数据·人工智能·算法·机器学习·支持向量机·ai·ai编程
我爱一条柴ya7 小时前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
慕婉03077 小时前
深度学习概述
人工智能·深度学习
19897 小时前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
神经星星7 小时前
新加坡国立大学基于多维度EHR数据实现细粒度患者队列建模,住院时间预测准确率提升16.3%
人工智能·深度学习·机器学习
TY-20257 小时前
深度学习——神经网络1
人工智能·深度学习·神经网络
19898 小时前
【零基础学AI】第31讲:目标检测 - YOLO算法
人工智能·rnn·yolo·目标检测·tensorflow·lstm
沐尘而生8 小时前
【AI智能体】智能音视频-硬件设备基于 WebSocket 实现语音交互
大数据·人工智能·websocket·机器学习·ai作画·音视频·娱乐