Pytorch从零开始实战16

Pytorch从零开始实战------ResNeXt-50算法的思考

本系列来源于365天深度学习训练营

原作者K同学

对于上次ResNeXt-50算法,我们同样有基于TensorFlow的实现。具体代码如下。

引入头文件

python 复制代码
import numpy as np
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Input, Dense, Dropout, Conv2D, MaxPool2D, Flatten, GlobalAvgPool2D, concatenate, \
BatchNormalization, Activation, Add, ZeroPadding2D, Lambda
from tensorflow.keras.layers import ReLU
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.models import Model

分组卷积模块

python 复制代码
# 定义分组卷积
def grouped_convolution_block(init_x, strides, groups, g_channels):
    group_list = []
    # 分组进行卷积
    for c in range(groups):
        # 分组取出数据
        x = Lambda(lambda x: x[:, :, :, c * g_channels:(c + 1) * g_channels])(init_x)
        # 分组进行卷积
        x = Conv2D(filters=g_channels, kernel_size=(3, 3),strides=strides, padding='same', use_bias=False)(x)
        # 存入list
        group_list.append(x)
    # 合并list中的数据
    group_merage = concatenate(group_list, axis=3)
    x = BatchNormalization(epsilon=1.001e-5)(group_merage)
    x = ReLU()(x)
    return x

残差单元

python 复制代码
# 定义残差单元
def block(x, filters, strides=1, groups=32, conv_shortcut=True):

    if conv_shortcut:
        shortcut = Conv2D(filters * 2, kernel_size=(1, 1), strides=strides, padding='same', use_bias=False)(x)
        # epsilon为BN公式中防止分母为零的值
        shortcut = BatchNormalization(epsilon=1.001e-5)(shortcut)
    else:
        # identity_shortcut
        shortcut = x
        
    # 三层卷积层
    x = Conv2D(filters=filters, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x)
    x = BatchNormalization(epsilon=1.001e-5)(x)
    x = ReLU()(x)
    # 计算每组的通道数
    g_channels = int(filters / groups)
    # 进行分组卷积
    x = grouped_convolution_block(x, strides, groups, g_channels)

    x = Conv2D(filters=filters * 2, kernel_size=(1, 1), strides=1, padding='same', use_bias=False)(x)
    x = BatchNormalization(epsilon=1.001e-5)(x)
    x = Add()([x, shortcut])
    x = ReLU()(x)
    return x

堆叠残差单元

python 复制代码
# 堆叠残差单元
def stack(x, filters, blocks, strides, groups=32):
    # 每个stack的第一个block的残差连接都需要使用1*1卷积升维
    x = block(x, filters, strides=strides, groups=groups)
    for i in range(blocks):
        x = block(x, filters, groups=groups, conv_shortcut=False)
    return x

网络搭建

python 复制代码
# 定义ResNext50(32*4d)网络
def ResNext50(input_shape, num_classes):
    inputs = Input(shape=input_shape)
    # 填充3圈0,[224,224,3]->[230,230,3]
    x = ZeroPadding2D((3, 3))(inputs)
    x = Conv2D(filters=64, kernel_size=(7, 7), strides=2, padding='valid')(x)
    x = BatchNormalization(epsilon=1.001e-5)(x)
    x = ReLU()(x)
    # 填充1圈0
    x = ZeroPadding2D((1, 1))(x)
    x = MaxPool2D(pool_size=(3, 3), strides=2, padding='valid')(x)
    # 堆叠残差结构
    x = stack(x, filters=128, blocks=2, strides=1)
    x = stack(x, filters=256, blocks=3, strides=2)
    x = stack(x, filters=512, blocks=5, strides=2)
    x = stack(x, filters=1024, blocks=2, strides=2)
    # 根据特征图大小进行全局平均池化
    x = GlobalAvgPool2D()(x)
    x = Dense(num_classes, activation='softmax')(x)
    # 定义模型
    model = Model(inputs=inputs, outputs=x)
    return model

对于残差单元中的代码,提出一个问题:当conv_shortcut=False的时候,在执行Add操作时,理论上通道数不一致,为什么代码不报错?

答:这主要是跟下面堆叠残差单元的代码有关系,每个stack第一轮总会令conv_shortcut为True,使得x通道数进行扩展,而后面循环的时候传入的filters还是这个函数的实参,没有发生变化,但由于conv_shortcut为False,此时shortcut的通道数是与上面的x一致,所以在Add的时候,代码不会报错。

python 复制代码
def stack(x, filters, blocks, strides, groups=32):
    # 每个stack的第一个block的残差连接都需要使用1*1卷积升维
    x = block(x, filters, strides=strides, groups=groups)
    for i in range(blocks):
        x = block(x, filters, groups=groups, conv_shortcut=False)
    return x

本文只是对ResNeXt-50算法的部分代码进行思考,学习过程中需要积极思考与探索,以提高能力和解决问题。

相关推荐
hie9889410 分钟前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学032712 分钟前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
路来了13 分钟前
Python小工具之PDF合并
开发语言·windows·python
蓝婷儿23 分钟前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手25 分钟前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
AntBlack1 小时前
拖了五个月 ,不当韭菜体验版算是正式发布了
前端·后端·python
小和尚同志1 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc
我就是全世界1 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm
.30-06Springfield1 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习
我不是哆啦A梦1 小时前
破解风电运维“百模大战”困局,机械版ChatGPT诞生?
运维·人工智能·python·算法·chatgpt