深入理解 Flink(四)Flink Time+WaterMark+Window 深入分析

Flink Window 常见需求背景

需求描述

每隔 5 秒,计算最近 10 秒单词出现的次数 ------ 滑动窗口 每隔 5 秒,计算最近 5 秒单词出现的次数 ------ 滚动窗口

  • ProcessingTime
  • IngestionTime
  • EventTime

WindowAssigner 的子类

  • SlidingProcessingTimeWindows
  • SlidingEventTimeWindows
  • TumblingEventTimeWindows
  • TumblingProcessingTimeWindows

使用 EventTime + WaterMark 处理乱序数据

示意图:

  • 使用 onPeriodicEmit 方法发送 watermark,默认每 200ms 发一次。
  • 窗口起始时间默认按各个时区的整点时间,支持自定义 offset。

Flink Watermark 机制定义

有序的流的 Watermarks

无序的流的 Watermarks

多并行度流的 Watermarks

深入理解 Flink Watermark

Flink Window 触发的条件:

  1. watermark 时间 >= window_end_time
  2. 在 [window_start_time, window_end_time) 区间中有数据存在(注意是左闭右开的区间),而且是以 event time 来计算的

Flink 处理太过延迟数据

企业生产中一般不用。

治标不治本,企业生产中一般不用。

企业生产中应用较为广泛。

Flink 多并行度 Watermark

一个 window 可能会接受到多个 waterMark,我们以最小的为准。

Flink Window 概述

官网介绍

nightlies.apache.org/flink/flink...

Flink 的 window 分为两种类型的 Window,分别是:Keyed Windows 和 Non-Keyed Windows,他们的使用方式不同:

swift 复制代码
// Keyed Windows 
stream
    .keyBy(...) <- keyed versus non-keyed windows
    .window(...) <- required: "assigner"
    [.trigger(...)] <- optional: "trigger" (else default trigger)
    [.evictor(...)] <- optional: "evictor" (else no evictor)
    [.allowedLateness(...)] <- optional: "lateness" (else zero)
    [.sideOutputLateData(...)] <- optional: "output tag" (else no side output for late data)
    .reduce/aggregate/apply() <- required: "function"
    [.getSideOutput(...)] <- optional: "output tag"
swift 复制代码
// Non-Keyed Windows
stream
    .windowAll(...) <- required: "assigner"
    [.trigger(...)] <- optional: "trigger" (else default trigger)
    [.evictor(...)] <- optional: "evictor" (else no evictor)
    [.allowedLateness(...)] <- optional: "lateness" (else zero)
    [.sideOutputLateData(...)] <- optional: "output tag" (else no side output for late data)
    .reduce/aggregate/apply() <- required: "function"
    [.getSideOutput(...)] <- optional: "output tag"

Window 的生命周期

  1. 当属于某个窗口的第一个元素到达的时候,就会创建一个窗口。
  2. 当时间(event or processing time)超过 window 的结束时间戳加上用户指定的允许延迟(Allowed Lateness)时,窗口将被完全删除。
  3. 每个 Window 之上,都绑定有一个 Trigger 或者一个 Function(ProcessWindowFunction, ReduceFunction, or AggregateFunction)用来执行窗口内数据的计算。
  4. 可以给 Window 指定一个 Evictor,它能够在 after the trigger fires 以及 before and/or after the function is applied 从窗口中删除元素。

Flink Window 类型

Flink 流批同一前后的 Window 分类:

tumblingwindows ------ 滚动窗口

slidingwindows ------ 滑动窗口

session windows ------ 会话窗口

global windows ------ 全局窗口

Flink Window 操作使用

高级玩法:自定义 Trigger、自定义 Evictor,读者可自行搜索相关文章与代码。

Flink Window 增量聚合

  • reduce(ReduceFunction)
  • aggregate(AggregateFunction)
  • sum()
  • min()
  • max()
  • sum()

Flink Window 全量聚合

  • apply(WindowFunction)
  • process(ProcessWindowFunction)

Flink Window Join

scss 复制代码
// 在 Flink 中对两个 DataStream 做 Join
// 1、指定两张表
// 2、指定这两张表的链接字段
stream.join(otherStream) // 两个流进行关联
    .where(<KeySelector>) // 选择第一个流的key作为关联字段
    .equalTo(<KeySelector>) // 选择第二个流的key作为关联字段
    .window(<WindowAssigner>) // 设置窗口的类型
    .apply(<JoinFunction>) // 对结果做操作 process apply = foreach

Tumbling Window Join

Sliding Window Join

Session Window Join

Interval Join

核心代码示例:

sql 复制代码
DataStream<Integer> orangeStream = ...;
DataStream<Integer> greenStream = ...;
orangeStream
    .keyBy(<KeySelector>)
    .intervalJoin(greenStream.keyBy(<KeySelector>))
    .between(Time.milliseconds(-2), Time.milliseconds(1))
    .process (new ProcessJoinFunction<Integer, Integer, String(){
        @Override
        public void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {
            out.collect(first + "," + second);
       }
    });
相关推荐
数据与人工智能律师1 天前
解码Web3:DeFi、GameFi、SocialFi的法律风险警示与合规路径
大数据·网络·人工智能·云计算·区块链
九河云1 天前
TOS + 数字孪生:集装箱码头的智能进化密码
大数据·服务器·网络·数据库·数字化转型
说私域1 天前
开源链动2+1模式AI智能名片S2B2C商城小程序在竞争激烈的中低端面膜服装行业中的应用与策略
大数据·人工智能·小程序
bemyrunningdog1 天前
IntelliJ IDEA合并分支到master全攻略
大数据·elasticsearch·intellij-idea
孟意昶1 天前
Doris专题17- 数据导入-文件格式
大数据·数据库·分布式·sql·doris
星光一影1 天前
Java版小区物业管理系统/业主端/物业端/管理端/支持公众号、小程序、app
java·大数据·小程序
武子康1 天前
大数据-125 - Flink 实时流计算中的动态逻辑更新:广播状态(Broadcast State)全解析
大数据·后端·flink
数在表哥1 天前
从数据沼泽到智能决策:数据驱动与AI融合的中台建设方法论与技术实践指南(一)
大数据·人工智能
还是大剑师兰特1 天前
Hadoop面试题及详细答案 110题 (71-85)-- 集群部署与运维
大数据·hadoop·大剑师·hadoop面试题
gddkxc1 天前
悟空 AI CRM 的回款功能:加速资金回流,保障企业财务健康
大数据·人工智能·信息可视化