[PyTorch][chapter 9][李宏毅深度学习][Why Deep]

前言:

我们知道深度学习一个重要特征是网络堆叠,深。 为什么需要深度,

本篇主要简单介绍一下该原因

目录:

1: 简介

2: 模块化分析

3: 语音识别例子


一 简介

有人通过实验,使用相同的网络参数,深度越深的网络相当于浅层网络效果更好。

1.1 Deeper is Better

如下图,随着网络层次逐渐加深,文本错误率逐渐降低

如下图,我们只用一层的网络,参数量跟多层一样,错误率高很多.

为什么产生这种现象?

同样的参数量,深度网络比浅层网络效果更好。


二 模块化分析

我们写程序,也把函数分为不同模块,实现不同功能

深度学习不同的层也相当于不同的函数,不同的函数实现不同的功能,

更高层也能使用到.

2.1 数据集的影响

比我我们要通过一个神经网络实现做4分类

|-------|------|
| 长头发女生 | 数据量大 |
| 长头发男生 | 数据量小 |
| 短头发女生 | 数据量大 |
| 短头发男生 | 数据量小 |

因为长头发男生数据集小,训练的网络一般会比较差。

解决方案:

使用更深层次的网络,有的用来识别男女,有的用来识别短头发长头发

然后更高层次的网络用来做4分类.

深度学习就相同于实现上面模组化的功能,每一层的神经元的输出,作为下一层神经元的输入.

我们没有足够的训练数据,所以做Deep Learning


三 语音识别例子

以发音识别为例:

输入了语音特征,输出对应的概率

在深度学习采样的模型如下:绿色模块是一些根据专家信息提取的声音

特征信息

Google 曾经做过实验:

使用深度学习的模型甚至完全不需要上面绿色的模块

可以达到前面模型一样的准确率.

11: Why Deep?_哔哩哔哩_bilibili


相关推荐
33三 三like1 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a1 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
Forrit2 小时前
ptyorch安装
pytorch
腾讯云开发者2 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗3 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper3 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_3 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信3 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235863 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活