[PyTorch][chapter 9][李宏毅深度学习][Why Deep]

前言:

我们知道深度学习一个重要特征是网络堆叠,深。 为什么需要深度,

本篇主要简单介绍一下该原因

目录:

1: 简介

2: 模块化分析

3: 语音识别例子


一 简介

有人通过实验,使用相同的网络参数,深度越深的网络相当于浅层网络效果更好。

1.1 Deeper is Better

如下图,随着网络层次逐渐加深,文本错误率逐渐降低

如下图,我们只用一层的网络,参数量跟多层一样,错误率高很多.

为什么产生这种现象?

同样的参数量,深度网络比浅层网络效果更好。


二 模块化分析

我们写程序,也把函数分为不同模块,实现不同功能

深度学习不同的层也相当于不同的函数,不同的函数实现不同的功能,

更高层也能使用到.

2.1 数据集的影响

比我我们要通过一个神经网络实现做4分类

|-------|------|
| 长头发女生 | 数据量大 |
| 长头发男生 | 数据量小 |
| 短头发女生 | 数据量大 |
| 短头发男生 | 数据量小 |

因为长头发男生数据集小,训练的网络一般会比较差。

解决方案:

使用更深层次的网络,有的用来识别男女,有的用来识别短头发长头发

然后更高层次的网络用来做4分类.

深度学习就相同于实现上面模组化的功能,每一层的神经元的输出,作为下一层神经元的输入.

我们没有足够的训练数据,所以做Deep Learning


三 语音识别例子

以发音识别为例:

输入了语音特征,输出对应的概率

在深度学习采样的模型如下:绿色模块是一些根据专家信息提取的声音

特征信息

Google 曾经做过实验:

使用深度学习的模型甚至完全不需要上面绿色的模块

可以达到前面模型一样的准确率.

11: Why Deep?_哔哩哔哩_bilibili


相关推荐
小白学大数据几秒前
未来趋势:AI 时代下 python 爬虫技术的发展方向
运维·人工智能·爬虫·python·自动化
dagouaofei2 分钟前
2026 年年度工作计划 PPT:AI 自动生成方案横向对比
人工智能·python·powerpoint
龙腾AI白云8 分钟前
10分钟了解向量数据库(1)
人工智能·神经网络
Mintopia14 分钟前
“开源”和“闭源“,AI 模型的发展方向
前端·人工智能·aigc
广东数字化转型15 分钟前
开源!工业AI模型训练平台,包含图像采集、智能检测、数据标注、模型训练四大模块
人工智能·开源
龙亘川25 分钟前
技术驱动低空经济:5G-A+AI + 北斗赋能,无人机网联化核心架构与落地实践
人工智能·5g·无人机
kisshuan1239627 分钟前
实战景观图像识别与分类_faster-rcnn_hrnetv2p-w40_2x_coco模型应用
人工智能·分类·数据挖掘
wu_jing_sheng030 分钟前
黑龙江省保险补贴Shapefile转换工具:GIS数据处理自动化实践
大数据·数据库·人工智能
around_0130 分钟前
实验4基于神经网络的模式识别实验
人工智能·深度学习·神经网络
IT_陈寒32 分钟前
Vite 5.0 性能优化实战:从3秒到300ms的构建提速秘籍
前端·人工智能·后端