[PyTorch][chapter 9][李宏毅深度学习][Why Deep]

前言:

我们知道深度学习一个重要特征是网络堆叠,深。 为什么需要深度,

本篇主要简单介绍一下该原因

目录:

1: 简介

2: 模块化分析

3: 语音识别例子


一 简介

有人通过实验,使用相同的网络参数,深度越深的网络相当于浅层网络效果更好。

1.1 Deeper is Better

如下图,随着网络层次逐渐加深,文本错误率逐渐降低

如下图,我们只用一层的网络,参数量跟多层一样,错误率高很多.

为什么产生这种现象?

同样的参数量,深度网络比浅层网络效果更好。


二 模块化分析

我们写程序,也把函数分为不同模块,实现不同功能

深度学习不同的层也相当于不同的函数,不同的函数实现不同的功能,

更高层也能使用到.

2.1 数据集的影响

比我我们要通过一个神经网络实现做4分类

|-------|------|
| 长头发女生 | 数据量大 |
| 长头发男生 | 数据量小 |
| 短头发女生 | 数据量大 |
| 短头发男生 | 数据量小 |

因为长头发男生数据集小,训练的网络一般会比较差。

解决方案:

使用更深层次的网络,有的用来识别男女,有的用来识别短头发长头发

然后更高层次的网络用来做4分类.

深度学习就相同于实现上面模组化的功能,每一层的神经元的输出,作为下一层神经元的输入.

我们没有足够的训练数据,所以做Deep Learning


三 语音识别例子

以发音识别为例:

输入了语音特征,输出对应的概率

在深度学习采样的模型如下:绿色模块是一些根据专家信息提取的声音

特征信息

Google 曾经做过实验:

使用深度学习的模型甚至完全不需要上面绿色的模块

可以达到前面模型一样的准确率.

11: Why Deep?_哔哩哔哩_bilibili


相关推荐
蒋星熠8 分钟前
多模态技术深度探索:融合视觉与语言的AI新范式
人工智能·python·深度学习·机器学习·分类·数据挖掘·多分类
Francek Chen20 分钟前
【自然语言处理】预训练04:预训练word2vec
人工智能·pytorch·深度学习·自然语言处理·word2vec
元宇宙时间20 分钟前
Nine.fun:连接现实娱乐与Web3经济的全新生态
人工智能·金融·web3·区块链
甄心爱学习26 分钟前
数据挖掘6-AI总结
人工智能·数据挖掘
美团技术团队28 分钟前
美团 LongCat 团队发布 VitaBench:基于复杂生活场景的交互式 Agent 评测基准
人工智能
非凸科技43 分钟前
第50届ICPC亚洲区域赛·成都站,非凸科技持续护航顶尖赛事
人工智能·科技
深度学习机器1 小时前
RAG的另一种思路,基于文档树结构的推理型检索
人工智能·算法·架构
skywalk81631 小时前
老显卡老cpu用vllm推理大模型失败Intel(R) Xeon(R) CPU E5-2643 v2
人工智能·pytorch·python·vllm
深度学习机器1 小时前
Agent架构新方向?Claude Skills工作原理解析
人工智能·算法·架构
新智元1 小时前
他发明了价值万亿的 AGI,如今穷困潦倒
人工智能·openai