[PyTorch][chapter 9][李宏毅深度学习][Why Deep]

前言:

我们知道深度学习一个重要特征是网络堆叠,深。 为什么需要深度,

本篇主要简单介绍一下该原因

目录:

1: 简介

2: 模块化分析

3: 语音识别例子


一 简介

有人通过实验,使用相同的网络参数,深度越深的网络相当于浅层网络效果更好。

1.1 Deeper is Better

如下图,随着网络层次逐渐加深,文本错误率逐渐降低

如下图,我们只用一层的网络,参数量跟多层一样,错误率高很多.

为什么产生这种现象?

同样的参数量,深度网络比浅层网络效果更好。


二 模块化分析

我们写程序,也把函数分为不同模块,实现不同功能

深度学习不同的层也相当于不同的函数,不同的函数实现不同的功能,

更高层也能使用到.

2.1 数据集的影响

比我我们要通过一个神经网络实现做4分类

|-------|------|
| 长头发女生 | 数据量大 |
| 长头发男生 | 数据量小 |
| 短头发女生 | 数据量大 |
| 短头发男生 | 数据量小 |

因为长头发男生数据集小,训练的网络一般会比较差。

解决方案:

使用更深层次的网络,有的用来识别男女,有的用来识别短头发长头发

然后更高层次的网络用来做4分类.

深度学习就相同于实现上面模组化的功能,每一层的神经元的输出,作为下一层神经元的输入.

我们没有足够的训练数据,所以做Deep Learning


三 语音识别例子

以发音识别为例:

输入了语音特征,输出对应的概率

在深度学习采样的模型如下:绿色模块是一些根据专家信息提取的声音

特征信息

Google 曾经做过实验:

使用深度学习的模型甚至完全不需要上面绿色的模块

可以达到前面模型一样的准确率.

11: Why Deep?_哔哩哔哩_bilibili


相关推荐
ASD123asfadxv6 分钟前
【医疗影像检测】VFNet模型在医疗器械目标检测中的应用与优化
人工智能·目标检测·计算机视觉
小真zzz8 分钟前
2025-2026年AI PPT工具排行榜:ChatPPT的全面领先与竞品格局解析
人工智能·ai·powerpoint·ppt·aippt
翱翔的苍鹰8 分钟前
CIFAR-10 是一个经典的小型彩色图像分类数据集,广泛用于深度学习入门、模型验证和算法研究
深度学习·算法·分类
智慧化智能化数字化方案9 分钟前
详解人工智能安全治理框架(中文版)【附全文阅读】
大数据·人工智能·人工智能安全治理框架
人工智能培训24 分钟前
开源与闭源大模型的竞争未来会如何?
人工智能·机器学习·语言模型·大模型·大模型幻觉·开源大模型·闭源大模型
啊阿狸不会拉杆30 分钟前
《机器学习》第六章-强化学习
人工智能·算法·机器学习·ai·机器人·强化学习·ml
人工智能AI技术32 分钟前
【Agent从入门到实践】21 Prompt工程基础:为Agent设计“思考指令”,简单有效即可
人工智能·python
式51641 分钟前
大模型学习基础(九)LoRA微调原理
人工智能·深度学习·学习
CCPC不拿奖不改名43 分钟前
python基础面试编程题汇总+个人练习(入门+结构+函数+面向对象编程)--需要自取
开发语言·人工智能·python·学习·自然语言处理·面试·职场和发展
菜鸟‍44 分钟前
【论文学习】一种用于医学图像分割单源域泛化的混合双增强约束框架 || 视觉 Transformer 在通用图像分割中的 “缺失环节”
人工智能·深度学习·计算机视觉