[PyTorch][chapter 9][李宏毅深度学习][Why Deep]

前言:

我们知道深度学习一个重要特征是网络堆叠,深。 为什么需要深度,

本篇主要简单介绍一下该原因

目录:

1: 简介

2: 模块化分析

3: 语音识别例子


一 简介

有人通过实验,使用相同的网络参数,深度越深的网络相当于浅层网络效果更好。

1.1 Deeper is Better

如下图,随着网络层次逐渐加深,文本错误率逐渐降低

如下图,我们只用一层的网络,参数量跟多层一样,错误率高很多.

为什么产生这种现象?

同样的参数量,深度网络比浅层网络效果更好。


二 模块化分析

我们写程序,也把函数分为不同模块,实现不同功能

深度学习不同的层也相当于不同的函数,不同的函数实现不同的功能,

更高层也能使用到.

2.1 数据集的影响

比我我们要通过一个神经网络实现做4分类

|-------|------|
| 长头发女生 | 数据量大 |
| 长头发男生 | 数据量小 |
| 短头发女生 | 数据量大 |
| 短头发男生 | 数据量小 |

因为长头发男生数据集小,训练的网络一般会比较差。

解决方案:

使用更深层次的网络,有的用来识别男女,有的用来识别短头发长头发

然后更高层次的网络用来做4分类.

深度学习就相同于实现上面模组化的功能,每一层的神经元的输出,作为下一层神经元的输入.

我们没有足够的训练数据,所以做Deep Learning


三 语音识别例子

以发音识别为例:

输入了语音特征,输出对应的概率

在深度学习采样的模型如下:绿色模块是一些根据专家信息提取的声音

特征信息

Google 曾经做过实验:

使用深度学习的模型甚至完全不需要上面绿色的模块

可以达到前面模型一样的准确率.

11: Why Deep?_哔哩哔哩_bilibili


相关推荐
xinyaokeji15 分钟前
认准高精度:基恩士 VL 扫描仪为三维测量优选之选
大数据·人工智能
mubei-12315 分钟前
万字RAG综述:大语言模型的检索增强生成
人工智能·llm·rag·检索增强生成
Java中文社群19 分钟前
国内直连GPT、Claude和Gemini?N8N这次更新真的绝了!
人工智能·后端
小真zzz24 分钟前
Nano Banana Pro 深度解析与 AI PPT 工具全面评测报告
人工智能·ai·powerpoint·ppt·chatppt·banana pro
半空扫地僧一枚35 分钟前
D02期:档位切换
人工智能
风雨中的小七37 分钟前
解密Prompt系列67. 智能体的经济学:从架构选型到工具预算
人工智能·llm
软件算法开发39 分钟前
基于蘑菇繁殖优化的LSTM深度学习网络模型(MRO-LSTM)的一维时间序列预测算法matlab仿真
深度学习·算法·matlab·lstm·时间序列预测·蘑菇繁殖优化·mro-lstm
Deepoch40 分钟前
智能硬件新纪元:Deepoc开发板如何重塑清洁机器人的“认知内核“
人工智能·清洁机器人·具身模型·deepoc
Blockbuater_drug42 分钟前
SDF 格式文件的前世今生:从化学信息学基石到 AI 时代的分子通用语言
数据库·人工智能·化学信息学·sdf格式