[PyTorch][chapter 9][李宏毅深度学习][Why Deep]

前言:

我们知道深度学习一个重要特征是网络堆叠,深。 为什么需要深度,

本篇主要简单介绍一下该原因

目录:

1: 简介

2: 模块化分析

3: 语音识别例子


一 简介

有人通过实验,使用相同的网络参数,深度越深的网络相当于浅层网络效果更好。

1.1 Deeper is Better

如下图,随着网络层次逐渐加深,文本错误率逐渐降低

如下图,我们只用一层的网络,参数量跟多层一样,错误率高很多.

为什么产生这种现象?

同样的参数量,深度网络比浅层网络效果更好。


二 模块化分析

我们写程序,也把函数分为不同模块,实现不同功能

深度学习不同的层也相当于不同的函数,不同的函数实现不同的功能,

更高层也能使用到.

2.1 数据集的影响

比我我们要通过一个神经网络实现做4分类

|-------|------|
| 长头发女生 | 数据量大 |
| 长头发男生 | 数据量小 |
| 短头发女生 | 数据量大 |
| 短头发男生 | 数据量小 |

因为长头发男生数据集小,训练的网络一般会比较差。

解决方案:

使用更深层次的网络,有的用来识别男女,有的用来识别短头发长头发

然后更高层次的网络用来做4分类.

深度学习就相同于实现上面模组化的功能,每一层的神经元的输出,作为下一层神经元的输入.

我们没有足够的训练数据,所以做Deep Learning


三 语音识别例子

以发音识别为例:

输入了语音特征,输出对应的概率

在深度学习采样的模型如下:绿色模块是一些根据专家信息提取的声音

特征信息

Google 曾经做过实验:

使用深度学习的模型甚至完全不需要上面绿色的模块

可以达到前面模型一样的准确率.

11: Why Deep?_哔哩哔哩_bilibili


相关推荐
DN20204 分钟前
靠谱的AI销售机器人哪家好
java·人工智能·机器人
菜鸟‍11 分钟前
【论文学习】重新审视面向持续图像分割的基于查询的 Transformer || 用于二分类图像分割的多视图聚合网络
人工智能·学习·计算机视觉
乌恩大侠11 分钟前
AI-RAN Sionna 开发者套件
人工智能·usrp·mimo·airan·sionna
foundbug99912 分钟前
正则化反演的MATLAB实现(适用于地球物理数值反演)
人工智能·matlab
JeffDingAI37 分钟前
【Datawhale学习笔记】RLHF微调技术及实践
人工智能·笔记·学习
CourserLi1 小时前
【AI 解题】Yusa的密码学课堂 2026.1.25
人工智能·密码学
人工智能AI技术1 小时前
【Agent从入门到实践】33 集成多工具,实现Agent的工具选择与执行
人工智能·python
逐梦苍穹1 小时前
Clawdbot vs ClaudeCode:7x24运行方案全对比
人工智能·claudecode·clawdbot
AI街潜水的八角1 小时前
语义分割实战——基于EGEUNet神经网络印章分割系统3:含训练测试代码、数据集和GUI交互界面
人工智能·深度学习·神经网络
MasonYyp1 小时前
DSPy优化提示词
大数据·人工智能