YOLOv8分割任务数据集标注流程

YOLOv8分割任务数据集标注流程

半自动化标注

这里使用了半自动化标注工具

链接:https://pan.baidu.com/s/1x22BtI_bHKH0iUUg0eTUdA

提取码:r5ca

需要指定权重和修改类别信息

配置文件中保存了类别、界面语言、轮廓模式等信息,可以通过导入配置文件来快速配置类别;也可以导出当前配置文件。

这里,我们将Main Arm类别添加进去,并删除其他多余的类型

参考文章

选择需要标注的图片文件夹,使用segment anything半自动化标注

e 完成(此时还能精细化调整)

s 保存(需要指定保存的文件夹)

JSON转TXT

需要将Labelme格式的JSON转换为YOLOv8分割格式的TXT

先将ISIA格式的JSON转换为Labelme类型

再将JSON转换为 TXT

python 复制代码
# -*- coding: utf-8 -*-
import json
import os
import argparse
from tqdm import tqdm
from PIL import Image


# 这是一个将json文件转换为YOLO格式的txt文件的脚本
def convert_label_json(json_dir, save_dir, classes):
    json_paths = os.listdir(json_dir)
    classes = classes.split(',')

    for json_path in tqdm(json_paths):
        # for json_path in json_paths:
        path = os.path.join(json_dir, json_path)
        with open(path, 'r') as load_f:
            json_dict = json.load(load_f)

        h, w = json_dict['imageHeight'], json_dict['imageWidth']

        # save txt path
        txt_path = os.path.join(save_dir, json_path.replace('json', 'txt'))
        txt_file = open(txt_path, 'w')

        for shape_dict in json_dict['shapes']:
            label = shape_dict['label']
            label_index = classes.index(label)
            points = shape_dict['points']

            points_nor_list = []

            for point in points:
                points_nor_list.append(point[0] / w)
                points_nor_list.append(point[1] / h)

            points_nor_list = list(map(lambda x: str(x), points_nor_list))
            points_nor_str = ' '.join(points_nor_list)

            label_str = str(label_index) + ' ' + points_nor_str + '\n'
            txt_file.writelines(label_str)


if __name__ == "__main__":
    """
    python json2txt_nomalize.py --json-dir my_datasets/color_rings/jsons --save-dir my_datasets/color_rings/txts --classes "cat,dogs"
    """
    parser = argparse.ArgumentParser(description='json convert to txt params')
    parser.add_argument('--json-dir', type=str, default=r'D:\dataset\Main Arm\lableme',
                        help='json path dir')
    parser.add_argument('--save-dir', type=str, default=r'D:\dataset\Main Arm\TXT',
                        help='txt save dir')
    parser.add_argument('--classes', type=str, default='Main Arm', help='classes')
    args = parser.parse_args()
    json_dir = args.json_dir
    save_dir = args.save_dir
    classes = args.classes
    convert_label_json(json_dir, save_dir, classes)

符合了YOLOv8分割标签的格式

相关推荐
一勺汤13 小时前
多尺度频率辅助类 Mamba 线性注意力模块(MFM),融合频域和空域特征,提升多尺度、复杂场景下的目标检测能力
深度学习·yolo·yolov12·yolo12·yolo12改进·小目标·mamba like
格林威20 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8模型实现人物识别(C#)
开发语言·人工智能·数码相机·yolo·计算机视觉·c#
Virgil1391 天前
数据分布是如何影响目标检测精度的
人工智能·深度学习·yolo·目标检测·计算机视觉
灵智工坊LingzhiAI1 天前
使用YOLOv11实现水果类别检测:从数据到模型训练的全过程
yolo
weixin_377634842 天前
【yolo】模型训练参数解读
yolo
学渣676563 天前
yolo-world环境配置
yolo
hans汉斯4 天前
【计算机科学与应用】面向APT攻击调查的溯源图冗余结构压缩
网络·算法·安全·web安全·yolo·目标检测·图搜索算法
Coovally AI模型快速验证4 天前
基于YOLOv11的CF-YOLO,如何突破无人机小目标检测?
人工智能·神经网络·yolo·目标检测·计算机视觉·cnn·无人机
Edward-tan5 天前
基于无人机 RTK 和 yolov8 的目标定位算法
yolo·无人机
源之缘-OFD先行者5 天前
基于YOLOv11的无人机目标检测实战(Windows环境)
人工智能·yolo·目标检测