基于 CNN 的智能垃圾分类系统

介绍

这个智能垃圾分类系统是基于 Python、PyQT5、TensorFlow 等技术栈构建而成的。系统主要通过 TensorFlow 训练两组模型来执行垃圾分类任务,其中包括一个 CNN 模型和一个 MobileNet 模型。数据集经过事先的清洗,包含了 4 个大类和 245 个小类的垃圾图片,以便更精确地进行分类。

在训练过程中,两个模型分别使用 train_cnn.py 和 train_mobilenet.py 进行训练。训练完成后,系统提供了图形化界面,利用 PyQT5 实现,用户可以通过上传图片来获取垃圾的具体种类。

该系统还包括了一些辅助功能,比如测试文件 testmodel.py 用于验证两组模型在验证集上的准确率,并通过 results 目录下的可视化图表展示训练过程中的准确率和损失变化曲线。

总的来说,这个系统将为用户提供一个方便快捷的垃圾分类解决方案,有望提高垃圾分类的准确性和效率。

技术栈

python、pyqt5、tensorflow、numpy、opencv、matplotlib、CNN、Mobilenet

037 基于tensorflow CNN的智能垃圾分类系统-设计展示

截图

相关推荐
蹦蹦跳跳真可爱5891 小时前
Python----深度学习(基于深度学习Pytroch簇分类,圆环分类,月牙分类)
人工智能·pytorch·python·深度学习·分类
蚂蚁20142 小时前
卷积神经网络(二)
人工智能·计算机视觉
z_mazin4 小时前
反爬虫机制中的验证码识别:类型、技术难点与应对策略
人工智能·计算机视觉·目标跟踪
lixy5795 小时前
深度学习3.7 softmax回归的简洁实现
人工智能·深度学习·回归
youhebuke2255 小时前
利用deepseek快速生成甘特图
人工智能·甘特图·deepseek
訾博ZiBo5 小时前
AI日报 - 2025年04月26日
人工智能
郭不耐5 小时前
DeepSeek智能时空数据分析(三):专业级地理数据可视化赏析-《杭州市国土空间总体规划(2021-2035年)》
人工智能·信息可视化·数据分析·毕业设计·数据可视化·城市规划
AI军哥6 小时前
MySQL8的安装方法
人工智能·mysql·yolo·机器学习·deepseek
余弦的倒数6 小时前
知识蒸馏和迁移学习的区别
人工智能·机器学习·迁移学习
Allen Bright6 小时前
【机器学习-线性回归-2】理解线性回归中的连续值与离散值
人工智能·机器学习·线性回归