yolov8n 瑞芯微RKNN和地平线Horizon芯片仿真测试部署,部署工程难度小、模型推理速度快

特别说明:参考官方开源的yolov8代码、瑞芯微官方文档、地平线的官方文档,如有侵权告知删,谢谢。

模型和完整仿真测试代码,放在github上参考链接 模型和代码

因为之前写了几篇yolov8模型部署的博文,存在两个问题:部署难度大、模型推理速度慢。该篇解决了这两个问题,且是全网部署难度最小、模型运行速度最快的部署方式。相对之前写的一篇【yolov8 瑞芯微RKNN和地平线Horizon芯片仿真测试部署】将DFL写在后处理中模型加速了,针对后处理进行优化后时耗略微增加。

1 模型和训练

训练代码参考官方开源的yolov8训练代码。

2 导出 yolov8 onnx

导出onnx增加以下几行代码:

python 复制代码
        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

增加保存onnx模型代码

python 复制代码
        print("===========  onnx =========== ")
        import torch
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["reg1", "cls1", "reg2", "cls2", "reg3", "cls3"]
        torch.onnx.export(self.model, dummy_input, "./weights/yolov8_relu_80class_ZQ1.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=11)
        print("======================== convert onnx Finished! .... ")

修改完以上两个地方,运行推理脚本(运行会报错,但不影响onnx文件的生成)。

python 复制代码
from ultralytics import YOLO
# 推理
model = YOLO('./weights/yolov8n_relu_ZQ_80class.pt')
results = model(task='detect', mode='predict', source='./images/test.jpg', line_width=3, show=True, save=True, device='cpu')

3 yolov8 onnx 测试效果

onnx模型和测试完整代码,放在github上代码

4 tensorRT 优化前后时耗

上一篇【yolov8 瑞芯微RKNN和地平线Horizon芯片仿真测试部署】tensorRT部署推理10000次的平均时耗(显卡 Tesla V100、cuda_11.0)

本篇tensorRT部署推理10000次的平均时耗(显卡 Tesla V100、cuda_11.0)

5 rknn 板端C++部署

C++完整部署代码和模型示例参考

把板端C++代码的模型和时耗也给贴出来供大家参考,使用芯片rk3588。相对之前在rk3588上推理40ms,降到了17ms,后处理稍微有增加。

上一篇【yolov8 瑞芯微RKNN和地平线Horizon芯片仿真测试部署】部署到rknn3588上的C++时耗

本篇部署方法时耗

相关推荐
2501_9413331015 小时前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
xsc-xyc18 小时前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
张3蜂19 小时前
我希望做的是识别身份证正反面,我需要标注多少张图片?
yolo
AAD5558889921 小时前
YOLOv8-MAN-Faster电容器缺陷检测:七类组件识别与分类系统
yolo·分类·数据挖掘
AI浩1 天前
YOLO-IOD:面向实时增量目标检测
yolo·目标检测·目标跟踪
wfeqhfxz25887821 天前
YOLOv8-BiFPN鸟巢目标检测与识别实战教程
yolo·目标检测·目标跟踪
Katecat996631 天前
基于YOLOv8和MAFPN的骆驼目标检测系统实现
人工智能·yolo·目标检测
ZCXZ12385296a1 天前
YOLOv8_HSPAN_机器人视觉系统中的球体目标检测与追踪_1
yolo·目标检测·机器人
BestSongC1 天前
基于 YOLO11 的智能行人摔倒检测系统
人工智能·深度学习·yolo·目标检测
2501_941333101 天前
【工业视觉检测】基于YOLOv8的皮带输送机关键部件检测与识别系统完整实现
人工智能·yolo·视觉检测