决策树--CART分类树

1、介绍

(1)简介

CART(Classification and Regression Trees)分类树是一种基于决策树的机器学习算法,用于解

决分类问题。它通过构建树状的决策规则来对数据进行分类。

(2)生成过程

① 选择一个特征和相应的切分点,将数据集分为两个子集。

② 对每个子集递归地重复步骤1,直到满足停止条件。

③ 当达到停止条件时,叶节点表示最终的分类结果。

(3)示意图

(4)特点:节点不仅包含特征,还要有特征属性。

2、如何构建树?

(1)特征选择方式--基尼系数最小

① 原始定义

② 特殊:二分类问题

③ 对给定的样本集合

④ 一般求法

⑤ 例题:根据表1 所给训练数据集,应用CART算法生成决策树。

(2) 树的深度如何决定

①给定深度,达到了预定的树的深度。

② 子集中的样本数量小于某个阈值。

③ 或者子集中的样本属于同一类别。

(3)叶子节点的代表值--表示最终的分类结果

3、分类决策树和CART分类树的区别

(1)分类准则

CART分类树使用基尼系数(Gini index)或基于基尼系数的指标(如GINI gain)作为划分准

则,以最大化数据集的纯度。

分类决策树常使用信息增益(Information Gain)或基于信息增益的指标(如信息增益比)作为

划分准则,以最大化数据集的信息增益。

(2)多叉树 vs. 二叉树

CART分类树是二叉树,每个非叶节点只有两个分支,分别对应划分特征的两个取值。

分类决策树可以是多叉树,每个非叶节点可以有多个分支,对应于划分特征的多个取值。

相关推荐
tyler-泰勒1 小时前
C++: string(二)
数据库·c++·算法
打不了嗝 ᥬ᭄1 小时前
3步实现贪吃蛇
c语言·数据结构·c++·算法·链表
mmz12071 小时前
深搜复习(c++)
c语言·c++·算法
灼华十一1 小时前
算法编程题-golang语言协程池
算法·面试·golang
学习同学3 小时前
【C++ 算法进阶】算法提升十五
开发语言·c++·算法
IT猿手3 小时前
多目标优化算法:多目标蛇鹫优化算法(MOSBOA)求解ZDT1、ZDT2、ZDT3、ZDT4、ZDT6,提供完整MATLAB代码
算法·数学建模·matlab·多目标优化·多目标优化算法
阿史大杯茶3 小时前
AtCoder Beginner Contest 380(ABCDEFG 题)视频讲解
数据结构·c++·算法
In 20293 小时前
7.一维差分
java·数据结构·算法
学习同学3 小时前
【C++ 算法进阶】算法提升十七
开发语言·c++·算法
wshi103 小时前
✅DAY30 贪心算法 | 452. 用最少数量的箭引爆气球 | 435. 无重叠区间 | 763.划分字母区间
python·算法·leetcode·贪心算法