决策树--CART分类树

1、介绍

(1)简介

CART(Classification and Regression Trees)分类树是一种基于决策树的机器学习算法,用于解

决分类问题。它通过构建树状的决策规则来对数据进行分类。

(2)生成过程

① 选择一个特征和相应的切分点,将数据集分为两个子集。

② 对每个子集递归地重复步骤1,直到满足停止条件。

③ 当达到停止条件时,叶节点表示最终的分类结果。

(3)示意图

(4)特点:节点不仅包含特征,还要有特征属性。

2、如何构建树?

(1)特征选择方式--基尼系数最小

① 原始定义

② 特殊:二分类问题

③ 对给定的样本集合

④ 一般求法

⑤ 例题:根据表1 所给训练数据集,应用CART算法生成决策树。

(2) 树的深度如何决定

①给定深度,达到了预定的树的深度。

② 子集中的样本数量小于某个阈值。

③ 或者子集中的样本属于同一类别。

(3)叶子节点的代表值--表示最终的分类结果

3、分类决策树和CART分类树的区别

(1)分类准则

CART分类树使用基尼系数(Gini index)或基于基尼系数的指标(如GINI gain)作为划分准

则,以最大化数据集的纯度。

分类决策树常使用信息增益(Information Gain)或基于信息增益的指标(如信息增益比)作为

划分准则,以最大化数据集的信息增益。

(2)多叉树 vs. 二叉树

CART分类树是二叉树,每个非叶节点只有两个分支,分别对应划分特征的两个取值。

分类决策树可以是多叉树,每个非叶节点可以有多个分支,对应于划分特征的多个取值。

相关推荐
前端小L几秒前
双指针专题(三):去重的艺术——「三数之和」
javascript·算法·双指针与滑动窗口
智者知已应修善业1 小时前
【求等差数列个数/无序获取最大最小次大次小】2024-3-8
c语言·c++·经验分享·笔记·算法
LYFlied1 小时前
【每日算法】LeetCode 416. 分割等和子集(动态规划)
数据结构·算法·leetcode·职场和发展·动态规划
多米Domi0112 小时前
0x3f 第19天 javase黑马81-87 ,三更1-23 hot100子串
python·算法·leetcode·散列表
历程里程碑2 小时前
滑动窗口最大值:单调队列高效解法
数据结构·算法·leetcode
課代表2 小时前
从初等数学到高等数学
算法·微积分·函数·极限·导数·积分·方程
ullio2 小时前
arc206d - LIS ∩ LDS
算法
等等小何3 小时前
leetcode1593拆分字符串使唯一子字符串数目最大
算法
王老师青少年编程4 小时前
2025年12月GESP(C++二级): 环保能量球
c++·算法·gesp·csp·信奥赛·二级·环保能量球
weixin_433417674 小时前
Canny边缘检测算法原理与实现
python·opencv·算法