机器学习——什么时候使用决策树无论是决策树,包括集成树还是神经网络都是非常强大、有效的学习方法。下面是各自的优缺点:决策树和集成树通常在表格数据上表现良好,也称为结构化数据,这意味着如果你的数据集看起来像一个巨大的电子表格,那么决策树是值得考虑的。例如,在房价预测应用中,我们有一个数据集,其包含于房屋大小、卧室数量、楼层数量和房龄相关特征,这种类型的数据存储在电子表格中,带有分类或连续值特征,无论是用于分类任务还是回归任务,当你试图预测一个离散类别或预测一个数值时,所有这些问题都是决策树可以做得很好的。相比之下,不推荐在非结构化数据上