2.2.3机器学习—— 判定梯度下降是否收敛 + α学习率的选择

2.2.3 判定梯度下降是否收敛 + α学习率的选择

2.1、 判定梯度下降是否收敛

有两种方法,如下图:

  • 方法一:
    • 如图,随着迭代次数的增加,J(W,b)损失函数不断下降
    • 当 iterations = 300 之后,下降的就不太明显了 / 基本是一条直线了。 这时我们就说,==> "梯度下降已经收敛了"
  • 方法二:
    • 设置一个阈值 ε,这里我们让ε = 0.001 (自己设置的,但有的时候也掌握不好这个值是多少)。当J(w,b)下降值 < ε 时,我们就认为他已经收敛了
  • 最后:还是推荐方法一

2.2 如何设置学习率 α

1、常见的情况:

  • 情况一:说明 代码出现bug / α学习率选择太大了
  • 情况二:学习率α太大了
  • 情况三:这是一个正常的情况,但是当 迭代次数过多 也可能说明α学习率选择较小
  • 情况四:学习率太大了/代码的问题,你把每次更新w 写成w = w +... 应该是减法

2、选择 α 学习率的方法:

  • 首先选择从 0.0001 0.01 0.1 1 10 依次去尝试,当发现学习率α的值过大时(J(W,b)损失函数发生上弹)。
  • 再进行从最后一次正常的α值(出现损失函数J(w,b)上弹之前的值),依次迭代乘3去尝试
  • 最后选择一个比较好的值

**第一步:**首先选择从 0.0001 0.01 0.1 1 10 依次去尝试,当发现学习率α的值过大时(J(W,b)损失函数发生上弹)。

第二步:再进行从最后一次正常的α值(出现损失函数J(w,b)上弹之前的值),依次迭代乘3去尝试。 然后可以以此类推。最后收敛后,选择最合适的α值。

相关推荐
ljd21032312424 分钟前
opencv函数展示2
人工智能·opencv·计算机视觉
戈云 110631 分钟前
Spark-SQL
人工智能·spark
明明真系叻1 小时前
2025.4.20机器学习笔记:文献阅读
人工智能·笔记·机器学习
学术小八1 小时前
2025年机电一体化、机器人与人工智能国际学术会议(MRAI 2025)
人工智能·机器人·机电
爱的叹息1 小时前
关于 雷达(Radar) 的详细解析,涵盖其定义、工作原理、分类、关键技术、应用场景、挑战及未来趋势,结合实例帮助理解其核心概念
人工智能·分类·数据挖掘
许泽宇的技术分享1 小时前
.NET MCP 文档
人工智能·.net
虾球xz1 小时前
游戏引擎学习第230天
c++·学习·游戏引擎
anscos2 小时前
Actran声源识别方法连载(二):薄膜模态表面振动识别
人工智能·算法·仿真软件·actran
-曾牛2 小时前
【LangChain4j快速入门】5分钟用Java玩转GPT-4o-mini,Spring Boot整合实战!| 附源码
java·开发语言·人工智能·spring boot·ai·chatgpt
token-go2 小时前
[特殊字符] KoalaAI 1.0.23 震撼升级:GPT-4.1免费畅享,AI革命触手可及!
人工智能