2.2.3机器学习—— 判定梯度下降是否收敛 + α学习率的选择

2.2.3 判定梯度下降是否收敛 + α学习率的选择

2.1、 判定梯度下降是否收敛

有两种方法,如下图:

  • 方法一:
    • 如图,随着迭代次数的增加,J(W,b)损失函数不断下降
    • 当 iterations = 300 之后,下降的就不太明显了 / 基本是一条直线了。 这时我们就说,==> "梯度下降已经收敛了"
  • 方法二:
    • 设置一个阈值 ε,这里我们让ε = 0.001 (自己设置的,但有的时候也掌握不好这个值是多少)。当J(w,b)下降值 < ε 时,我们就认为他已经收敛了
  • 最后:还是推荐方法一

2.2 如何设置学习率 α

1、常见的情况:

  • 情况一:说明 代码出现bug / α学习率选择太大了
  • 情况二:学习率α太大了
  • 情况三:这是一个正常的情况,但是当 迭代次数过多 也可能说明α学习率选择较小
  • 情况四:学习率太大了/代码的问题,你把每次更新w 写成w = w +... 应该是减法

2、选择 α 学习率的方法:

  • 首先选择从 0.0001 0.01 0.1 1 10 依次去尝试,当发现学习率α的值过大时(J(W,b)损失函数发生上弹)。
  • 再进行从最后一次正常的α值(出现损失函数J(w,b)上弹之前的值),依次迭代乘3去尝试
  • 最后选择一个比较好的值

**第一步:**首先选择从 0.0001 0.01 0.1 1 10 依次去尝试,当发现学习率α的值过大时(J(W,b)损失函数发生上弹)。

第二步:再进行从最后一次正常的α值(出现损失函数J(w,b)上弹之前的值),依次迭代乘3去尝试。 然后可以以此类推。最后收敛后,选择最合适的α值。

相关推荐
木卫四科技几秒前
DocETL 入门:让非结构化数据处理变得简单智能
人工智能·木卫四
玖日大大2 分钟前
OceanBase SeekDB:AI 原生数据库的技术革命与实践指南
数据库·人工智能·oceanbase
小润nature4 分钟前
Spec-Driven Development (SDD) 框架与开源 AI 智能体-意图的进化
人工智能·开源
后端小肥肠8 分钟前
复刻10W+爆款视频!我用Coze搭了个“人物故事”自动流水线,太香了!
人工智能·aigc·coze
微露清风17 分钟前
系统性学习C++-第二十讲-哈希表实现
c++·学习·散列表
轻竹办公PPT22 分钟前
2026 年工作计划 PPT 内容拆解,对比不同 AI 生成思路
人工智能·python·powerpoint
浔川python社29 分钟前
【版本更新提示】浔川 AI 翻译 v6.0 合规优化版已上线
人工智能
清 澜31 分钟前
c++高频知识点总结 第 1 章:语言基础与预处理
c++·人工智能·面试
睡醒了叭34 分钟前
目标检测-机器学习-Hog+SVM附代码python)
目标检测·机器学习·计算机视觉
OpenMiniServer1 小时前
AI全周期开发平台设计方案
人工智能