2.2.3机器学习—— 判定梯度下降是否收敛 + α学习率的选择

2.2.3 判定梯度下降是否收敛 + α学习率的选择

2.1、 判定梯度下降是否收敛

有两种方法,如下图:

  • 方法一:
    • 如图,随着迭代次数的增加,J(W,b)损失函数不断下降
    • 当 iterations = 300 之后,下降的就不太明显了 / 基本是一条直线了。 这时我们就说,==> "梯度下降已经收敛了"
  • 方法二:
    • 设置一个阈值 ε,这里我们让ε = 0.001 (自己设置的,但有的时候也掌握不好这个值是多少)。当J(w,b)下降值 < ε 时,我们就认为他已经收敛了
  • 最后:还是推荐方法一

2.2 如何设置学习率 α

1、常见的情况:

  • 情况一:说明 代码出现bug / α学习率选择太大了
  • 情况二:学习率α太大了
  • 情况三:这是一个正常的情况,但是当 迭代次数过多 也可能说明α学习率选择较小
  • 情况四:学习率太大了/代码的问题,你把每次更新w 写成w = w +... 应该是减法

2、选择 α 学习率的方法:

  • 首先选择从 0.0001 0.01 0.1 1 10 依次去尝试,当发现学习率α的值过大时(J(W,b)损失函数发生上弹)。
  • 再进行从最后一次正常的α值(出现损失函数J(w,b)上弹之前的值),依次迭代乘3去尝试
  • 最后选择一个比较好的值

**第一步:**首先选择从 0.0001 0.01 0.1 1 10 依次去尝试,当发现学习率α的值过大时(J(W,b)损失函数发生上弹)。

第二步:再进行从最后一次正常的α值(出现损失函数J(w,b)上弹之前的值),依次迭代乘3去尝试。 然后可以以此类推。最后收敛后,选择最合适的α值。

相关推荐
LZXCyrus4 分钟前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
red_redemption12 分钟前
自由学习记录(23)
学习·unity·lua·ab包
我感觉。21 分钟前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
YRr YRr30 分钟前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络
DieYoung_Alive30 分钟前
一篇文章了解机器学习(下)
人工智能·机器学习
夏沫的梦32 分钟前
生成式AI对产业的影响与冲击
人工智能·aigc
幽兰的天空39 分钟前
默语博主的推荐:探索技术世界的旅程
学习·程序人生·生活·美食·交友·美女·帅哥
goomind44 分钟前
YOLOv8实战木材缺陷识别
人工智能·yolo·目标检测·缺陷检测·pyqt5·木材缺陷识别
只怕自己不够好44 分钟前
《OpenCV 图像基础操作全解析:从读取到像素处理与 ROI 应用》
人工智能·opencv·计算机视觉
幻风_huanfeng1 小时前
人工智能之数学基础:线性代数在人工智能中的地位
人工智能·深度学习·神经网络·线性代数·机器学习·自然语言处理